На сторонах треугольника наименьшей целочисленной площади построены квадраты с общей площадью 560. Найти отношение целочисленных площадей двух квадратов (меньшей к большей) при известной площади третьего кадрата 74.
Назовем год замечательным, если его значение всецело делится на сумму двух двузначных чисел,составляющих его. Например: 2025/(20+25)=45, для 2005/(20+5), для 2100/(21 ...ещё...
<p>Внутри остроугольного треугольника АВС выбрана точка Р. Точки К и L – это проекции Р на прямые АВ и АС соответственно. На прямой ВС выбрана точка М так, что |КМ| = |LМ|. Точка Q симметрична Р относительно М. Докажите, что равны углы <a class="rawlink" onclick="load_full_body('pp', 4680, 'ebody11283246804680')">...ещё...</a></p>
На сторонах АВ и ВС треугольника АВС отмечены соответственно точки Е и F так, что |АЕ|/|ЕВ|=|ВF|/|FC|=4/9. Отрезок EF пересекает медиану BD в точке ...ещё...
Один кран наполняет ванну за 20 минут, а другой - за 30 минут. Вовочка открыл оба крана одновременно. К тому времени, когда ванна должна была наполниться, он обнаружил, что сливная ...ещё...
В квадрате ABCD построен треугольник АКМ, где вершина К лежит в середине стороны ВС, вершина М лежит на стороне CD. Найти отношение площадей треугольника АКМ и квадрата ABCD ...ещё...
Фальшивомонетчик напечатал купюры достоинством 43, 57 и 70 рублей, поровну каждого вида. Когда он потратил менее пяти купюр, у него осталось всего 20172 рубля. Сколько он потратил денег?
Четыре круга с различными целочисленными диаметрами D, D1, D2, D3 таковы, что D=D1 + D2 + D3. Для площадей этих кругов справедливо равенство S ...ещё...
Трое зашли в кафе. Один купил 4 сандвича, чашку кофе и 10 пончиков за 1 доллар 69 центов, второй купил 3 сандвича, чашку кофе и 7 пончиков за ...ещё...
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиуса 2, касающиеся её сторон и друг ...ещё...
Круги радиуса 1 наложены друг на друга так, что их границы образуют квадратную кружевную салфетку, изображенную на рисунке, причем центры кругов расположены в узлах квадратной решетки.
Точки M и N выбраны соответственно на сторонах АС и ВС треугольника АВС так, что |АМ|=|ВС| и |СМ|=|BN|. Пусть О- точка пересечения отрезков AN ...ещё...
Найти площадь прямоугольного треугольника по гипотенузе, равной 5 и биссектрисе,опущенной на неё и равной 2. Ответ округлите до сотых в виде десятичной записи до двух знаков после ...ещё...
Ваня задумал простое трёхзначное число, все цифры которого различны. На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух? В ответе укажите сумму всех ...ещё...
В равностороннем треугольнике ABC прямая l пересекает в точках K, L и M соответственно отрезки AB, BC и продолжение стороны AC за точку A. Изветсно, что |AK|=|BL ...ещё...
На стороне АВ треугольника АВС с целочисленными углами в градусах (угол В-тупой) отметили точку М так, что |АМ|=|ВС|. Из точки М и вершины В провели перпендикуляры МК и ...ещё...
В квадрате ABCD построена во внутрь полуокружность с диаметром CD. Из вершины В проведен отрезок ВМ на сторону AD, который касается полуокружности в точке К. Найти отношение площади ...ещё...