img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 32
Задача опубликована: 01.06.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В квадратной таблице nxn проведена несамопересекающая ломаная, все звенья которой лежат на внутренних перегородках между клетками 1х1. Ломаная делит таблицу на две части, клетки одной части закращена черным. При этом оказалось, что в таблице число бело-белых соседних клеток равно числу бело-черных соседних клеток и равно числу черно-черных соседних клеток. Найдите длину ломаной, если известно, что её длина в 66 раз больше стороны n данной таблицы.

Два тела вращенияЧерные и белые клетки - 2

Например, в таблице 3х3 проведена ломаная АВС длиной 4. Здесь каждого типа соседних клеток по 4.

Задачу решили: 22
всего попыток: 43
Задача опубликована: 08.07.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Две равные фигуры сложены из единичных кубиков, одна из белых кубиков, другая – из черных, причем, из этих двух фигур можно сложить куб n×n×n без пустот внутри. Оказалось, что в сложенном кубе число бело-белых соседних кубиков (т. е. имеющих общую грань) равно числу бело-черных соседних кубиков и равно числу черно-черных соседних кубиков. При каком n площадь поверхности одной из фигур в два раза больше площади поверхности куба.

Задачу решили: 17
всего попыток: 37
Задача опубликована: 22.07.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Любитель комбинаторной геометрии каждый год рисует правильный треугольник, длина стороны которого равна номеру этого года, и прямыми параллельными сторонам треугольника делит его на правильные треугольники со стороной 1.  В полученной таким образом треугольной сетке он закрашивает несколько треугольных ячеек так, чтобы они не пересекались, и при этом старается закрасить все узлы треугольной сетки. В 2022 году любителю не удалось это сделать. В каком ближайшем году он сможет закрасить сетку нужным образом?

Узлы и ячейки треугольной сетки

На рисунке приведен пример неудачной раскраски сетки, так как остались три незакрашенных узла.

Задачу решили: 19
всего попыток: 21
Задача опубликована: 07.09.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. Для каких простых чисел n начиная с 2 и не превосходящих 1000, число полученных частей в треугольнике является квадратным?

В ответе укажите сумму всех таких n.

На рисунке приведен равносторонний треугольник со стороной 6, в который вписаны 5 меньших равносторонних треугольников.

Треугольники в треугольнике

Задачу решили: 6
всего попыток: 26
Задача опубликована: 26.09.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

На плоскости можно провести несколько прямых так, что они, пересекаясь друг с другом, образуют несколько не перекрывающихся пятиконечных звезд, употребив при этом наименьшее число прямых. Например, рисунке показано, как 1 звезду нарисовать 5 прямыми, 3 звезды нарисовать 8 прямыми, как 3 звезды нарисовать 9 прямыми.

Прямые и звезды

Как нарисовать 7 звезд проведя наименьшее число прямых? В ответе укажите число прямых.

Важно учитывать, что в предложенной конструкции при продолжении прямых не должны появляться новые звезды.

Задачу решили: 17
всего попыток: 24
Задача опубликована: 05.10.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n.

Квадраты в квадрате

На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.

Задачу решили: 24
всего попыток: 30
Задача опубликована: 24.10.22 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mda

n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13.

Последовательность в таблице Пифагора

Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ...

Пусть a0=1, a1=6, a2=8. Найдите a111.

Задачу решили: 22
всего попыток: 26
Задача опубликована: 14.11.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. 

Последовательность на спирали

Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем ветвь параболы y=√x и рассмотрим на ней точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (4; 2) — число 51. Пусть an — число, соответствующее точке (n2;n) параболы; тогда  a0=1, a1=9, a2=51, a3=295, ... Найдите  23-й член последовательности (an).

Задачу решили: 19
всего попыток: 23
Задача опубликована: 16.11.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В координатной плоскости Oxy задана парабола y=x2, на которой отмечены все ее точки с целыми координатами.

Хорды параболы

Проведены всевозможные хорды параболы, с концами в отмеченных точках.  Расположим хорды в порядке возрастания их длины, без повторений, и рассмотрим последовательность квадратов длин этих хорд. Начало последовательности выглядит так: 2, 4, 10, 16, 18, 20, 26, …. На рисунке изображена хорда AB, которой соответствует а12 = 42+82 = 80. Найдите 64-ый член последовательности.

Задачу решили: 29
всего попыток: 46
Задача опубликована: 07.12.22 00:08
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Назовем зеркальным числом такое трехзначное число в сумме с трехзначным числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти сумму всех зеркальных числел..

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.