Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
65
Ковер Серпинского представляет собой бесконечное разбиение квадрата на меньшие квадраты. Построение выполняется поэтапно: на первом шаге исходный квадрат разбивается на девять равных квадратов и центральный квадрат закрашивается; на втором этапе каждый из оставшихся незакрашенных квадратов разбивается на девять меньших квадратов и центральный квадрат закрашивается, и так до бесконечности. На рисунке показаны разбиения квадрата, которые получаются после первых трех шагов. Сколько закрашенных и незакрашенных квадратов вместе получается на пятом шаге построения ковра Серпинского?
Задачу решили:
20
всего попыток:
68
На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке. Сколько треугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100? Обратите внимание, что здесь кроме красных и белых треугольников имеются красно-белые треугольники.
Задачу решили:
30
всего попыток:
121
В квадратную рамку из дерева вбито по три гвоздя параллельно друг другу с каждой стороны. Меняя глубину погружения гвоздей, добейтесь такого расположения, чтобы каждый гвоздь пересекал ровно n гвоздей (разумеется в проекции). Выясните, при каких значениях n выполняется условие задачи. В ответе укажите сумму всех таких значений n. На приведенном рисунке показано решение при n=1.
Задачу решили:
37
всего попыток:
58
Первые десять натуральных чисел разбейте на пары так, чтобы из пяти прямоугольников с длинами сторон, соответствующих парам, можно было сложить квадрат. В ответе укажите площадь наибольшего такого квадрата.
Задачу решили:
33
всего попыток:
37
Клетки таблицы 7x13 раскрашены в чёрный и белый цвета. Пар соседних клеток разного цвета всего 60, пар соседних клеток белого цвета всего 78. Сколько пар соседних клеток черного цвета?
Задачу решили:
19
всего попыток:
111
Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Найдите полный набор фигурок «тридомино». Из k фигурок этого набора можно сложить прямоугольник 6хk, например, на рисунке показан прямоугольник 6х10, сложенный из десяти фигурок. Сложите прямоугольник, употребив большее число фигурок найденного набора, причем, каждую фигурку можно использовать один раз. В ответе укажите наибольшее значение k. Уточним: 1) две фигурки различны, если их контуры нельзя совместить; 2) при построении прямоугольника фигурки можно как угодно поворачивать и переворачивать.
Задачу решили:
26
всего попыток:
36
Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.
Задачу решили:
23
всего попыток:
47
Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Существует несколько фигурок тридомино, некоторые из них являются разверткой куба. Выясните какие, и в ответе укажите количество таких тридомино.
Задачу решили:
19
всего попыток:
48
Три попарно неравных квадрата площади S1, S2 и S3 имеют общую вершину (и только её), при этом вершины всех квадратов расположены в узлах квадратной решетки 1х1. Ближайшие вершины соседних квадратов соединены отрезками, на которых построены ещё три квадрата, площадь каждого из них равна 10 (смотрите рисунок). Найдите наименьшее значение суммы S1+S2+S3 и укажите его в ответе.
Задачу решили:
25
всего попыток:
62
Числовому равенству 33+43+53=63 соответствует геометрическое равенство. Это геометрическое равенство можно доказать разрезанием меньших кубов на части, из которых затем складывается большой куб 6х6х6. Из какого наименьшего числа частей может при этом состоять куб 6х6х6?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|