img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 154
всего попыток: 561
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: по мотивам задачи Всесоюзной математической о...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?

Задачу решили: 80
всего попыток: 508
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?

Задачу решили: 103
всего попыток: 470
Задача опубликована: 16.05.09 10:19
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: lg

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Лиса может бегать по всей арене, а заяц лишь по её краю. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса — это точка на круге, а заяц — на его окружности; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

 

Задачу решили: 230
всего попыток: 476
Задача опубликована: 30.05.09 23:13
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Гусеница сидит в углу закрытой коробки 27×41×51 см. В самом дальнем от неё углу коробки есть маленькое отверстие, через которое она хочет выбраться на свободу. Какое наименьшее число сантиметров ей придётся для этого преодолеть?

Задачу решили: 773
всего попыток: 1125
Задача опубликована: 17.05.09 21:43
Прислал: vip img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: silentsquall

Лошадь и мул шли с тяжелой поклажей на спине. Лошадь жаловалась на свою непомерно тяжёлую ношу. "Чего ты жалуешься?" — отвечал ей мул: "Ведь, если я возьму у тебя один мешок, ноша моя станет вдвое тяжелее твоей. А вот если бы ты забрала у меня со спины один мешок, твоя поклажа сравнялась бы с моей". Сколько мешков несла лошадь и сколько нес мул? (В ответе укажите произведение найденных чисел.) 

Задачу решили: 762
всего попыток: 1379
Задача опубликована: 19.05.09 23:41
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Автомобилист проехал первую половину своего пути со средней скоростью 60 км/ч, а вторую — со средней скоростью 90 км/ч. Сколько км/ч составляла его средняя скорость на всём пути?

Задачу решили: 263
всего попыток: 463
Задача опубликована: 20.05.09 22:17
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: God_Gefest (Илья Закирзянов)

Вы — участник всем известной телевизионной игры, и Вам нужно выбрать одну из трёх шкатулок, в одной из которых находится Приз. Вы выбираете одну из шкатулок, например, №1, после чего всем известный ведущий, который знает, где Приз, открывает одну из оставшихся шкатулок, например, №3, где Приза (естественно) нет. После этого он спрашивает Вас, не желаете ли Вы изменить свой выбор и вместо шкатулки №1 выбрать шкатулку номер №2. Какова максимальная вероятность выбрать шкатулку с Призом при таких условиях игры? (Ответ представьте в виде несократимой дроби вида p/q, где p и q — натуральные числа.)

Задачу решили: 300
всего попыток: 416
Задача опубликована: 21.05.09 19:56
Прислала: xyz img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: 34

На складе было 17 чугунных чушек весом 5, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 27, 29, 30, 33 и 35 кг. Сначала со склада забрали две чушки. Затем вывезли ещё несколько чушек, вместе весивших в три раза больше, чем две первых. В третий раз вывезли уже в пять раз больше, чем в первый раз (по весу). После этого осталась одна чушка. Сколько килограммов она весит?

Задачу решили: 108
всего попыток: 179
Задача опубликована: 21.05.09 21:06
Прислал: demiurgos img
Источник: Дж. Литлвуд "Математическая смесь"
Вес: 1
сложность: 5 img
баллы: 100

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

Задачу решили: 158
всего попыток: 581
Задача опубликована: 28.05.09 23:08
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 4 img
класс: 6-7 img
баллы: 100

Из какого наименьшего числа квадратов, среди которых нет двух равных, можно сложить прямоугольник? (Квадратов должно быть больше одного.)

Если Вы считаете, что нельзя, то введите 0.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.