img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 147
всего попыток: 213
Задача опубликована: 30.03.12 08:00
Прислал: kolkingen img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: 0Vlas

Вы пошли в супермаркет за дисками. Один диск стоит 1 доллар, но при приобретении X дисков (X < 100) вы получаете скидку X %. Когда вы пришли домой, вам сказал брат: "Ты заплатил за диски наибольшую возможную сумму денег!". Сколько долларов вы заплатили?

Задачу решили: 71
всего попыток: 86
Задача опубликована: 11.04.12 08:00
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Даны два многочлена, которые удовлетворяют условиям:   

a5 +  b+c5 + 5(a4(b + c) + b4(a + c) +c4(a + b)) = -1

a3(b2 + c2 ) + b3(a2 + c2) + c3(a2 + b2) + 2(a3bc + b3ac +c3ab ) + 3abc(ab + bc + ac) = 1/10

Чему равно a + b + c?

Задачу решили: 87
всего попыток: 211
Задача опубликована: 11.05.12 08:00
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько целых пар x и y удовлетворяет системе неравенств
y≥0
y ≤ 900 - x2?

Задачу решили: 31
всего попыток: 48
Задача опубликована: 18.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ChLD (Анатолий Лакеev)

Коэффициенты an приведённого многочлена P(x)=x2012+a1x2011+...+a2012 удовлетворяют условию

||an|-1|<1/2012  при   n=1,...,2012. 

Найдите максимальное количество отрицательных коэффициентов многочлена P(x) при условии, что действительных корней у него нет.

Задачу решили: 119
всего попыток: 136
Задача опубликована: 01.06.12 08:00
Прислал: leonidr321 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: 0Vlas

Найдите максимально возможное целое значение отношения (x+y)^2/(xy), где x и y — положительные целые числа.

 

Задачу решили: 41
всего попыток: 59
Задача опубликована: 30.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

В последовательности x_1, x_2, \ldots, x_{10} четыре единицы, три двойки и три тройки. Пусть z_1 = x_1 иz_{n+1} = \left(1 + \frac{1}{n}\right)^2 \cdot 
\cfrac{z_n x_{n+1}}{z_n + x_{n + 1}}, \quad n = 1, 2, \ldots, 9.

Найдите наибольшее значение z_{10}.

(Ответ дробный)
Задачу решили: 65
всего попыток: 176
Задача опубликована: 03.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Найдите количество упорядоченных пар целых чисел (x,y), удовлетворяющих условию 
4x^3 - 5x^2y + 10xy^2 + 12y^3 - 108x - 81y = 0,
и таких, что x и y по модулю не превосходят 1000.

Задачу решили: 88
всего попыток: 120
Задача опубликована: 15.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Volga (Xxx Xxx)

Заданы 3 системы неравенств

3x-y≤11, 2x-5y≤-10,

-4x+2y≤5, x+y≤10,

2x-y≤5, 4x-2y≥10.

Точки плоскости, координаты  которых удовлетворяют данным  системам, образуют некоторое множество. Найдите точку этого множества с максимальной суммой координат x и y. В ответе укажите эту сумму.

Задачу решили: 67
всего попыток: 101
Задача опубликована: 26.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Известно, что 12x1+22x2+32x3+...+2002 x200≤2040000, где x1,  x2,  x3 ,…. X200 принимают значения 0 или 1. 

Найти максимальное значение 12x1+22x2+32x3+...+2002 x200.

Задачу решили: 43
всего попыток: 112
Задача опубликована: 21.09.12 08:00
Прислал: bbny img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Подмножество S действительных чисел строится следующим образом:

1. Число 1 принадлежит S

2. Для любой пары чисел a и b из S числа a+b, a-b, a*b, a/b (b ≠ 0), sqrt(a) (a >= 0) принадлежат S

Теперь для каждого числа из S определим ранг (целое неотрицательное число):

Будем говорить, что числа -1, 0 и 1 имеют ранг 0 в S, числа ранга k и ниже образуют подмножество Sk множества S, а числа, получаемые из пар чисел Sk пятью вышеуказанными бинарными и унарными операциями и не принадлежащие Sk, имеют ранг k+1.

Т.е. ранг - это минимальный номер шага, на котором мы можем получить число из исходного множества S0 = {-1,0,1}

Найдите ранг числа


number.gif

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.