Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
36
Прямоугольный параллелепипед 3x4x5 составлен из белых и черных единичных кубиков. Оказалось, что пар соседних кубиков (т. е. имеющих общую грань) разного цвета всего 48, пар соседних кубиков белого цвета всего 51. Сколько пар соседних кубиков черного цвета?
Задачу решили:
19
всего попыток:
37
У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг. Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?
Задачу решили:
14
всего попыток:
41
Вова играл против компьютера в NIM. В какой-то момент он понял принцип работы компьютера! В частности, он понял, что следующая позиция – проигрышная: Позиция П: И тут, заметив, что компьютер играет как-то однобоко – делает выигрывающий ход именно с первой же кучей, с которой это возможно (номера куч остаются всё время неизменными), придумал себе забаву. Один ход человека заключался в нажатии мышью на те спички, которые он удаляет. Например, если он хочет удалить 4 спички из какой-то кучи, то он поочерёдно нажимает на 4 спички в этой куче. Так вот, Вова, зная, что, получив позицию П он проиграет, хочет минимизировать количество своих нажатий с этой позиции до конца игры. Чему равен этот минимум? Его товарищ Вася, будучи в курсе всех этих дел, придумал себе противоположную забаву: как из той же позиции П максимизировать общее количество своих нажатий до конца игры. Чему равен этот максимум? Введите в ответе произведение этих двух чисел – минимум Вовы и максимум Васи.
Задачу решили:
16
всего попыток:
29
На столе расположены 2022 кучи спичек. Кучи пронумерованы: 1, 2, 3,... , 2022. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Задачу решили:
19
всего попыток:
31
На столе расположена 2021 куча спичек. Кучи пронумерованы: 1, 2, 3,... , 2021. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Задачу решили:
28
всего попыток:
31
Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.
Задачу решили:
9
всего попыток:
16
В правильном шестиугольнике со стороной 3 нарисовали сетку из единичных равносторонних треугольников (смотри рисунок). Художник время от времени подходит к рисунку с шестиугольником, окунает кисть в банку с краской и закрашивает по линиям сетки весь контур одного равностороннего треугольника любого размера. При этом контур очередного закрашиваемого треугольника может проходить по каким-то ранее закрашенным местам. За какое минимальное количество подходов художник может закрасить всю сетку (включая границу шестиугольника)? На рисунке изображён пример частичного закрашивания сетки после 4-х подходов (исключительно для красоты художник использовал разные цвета). В качестве решения необходимо предъявить доказательство минимальности того количества подходов, которое вы нашли.
Задачу решили:
18
всего попыток:
27
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань (буква О, например, написана 3 раза). Сколько раз в среднем надо бросить кубик, чтобы 6 последовательных бросков дали слово "ХОРОШО"?
Задачу решили:
22
всего попыток:
23
20 студентов сдавали экзамен по очереди. Сначала они написали на бумажках номера от 1 до 20 и случайным образом вытаскивали по одной бумажке, тот кто вытащил бумажку с номером 1, пошел сдавать первым. Затем бумажка с номером 20 была уничтожена и оставшиеся студенты снова вытаскивали бумажки и снова, вытащивший номер 1 шел следующим. Процедура повторялась каждый раз, пока все студенты не сдали экзамен. Как оказалось, у каждого студента все вытянутые им номера были различными. Староста группы в первый раз вытащил число 14. Каким по счету он пошел отвечать?
Задачу решили:
7
всего попыток:
18
За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|