Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
51
Расмотрим такую последовательность: Сколько цифр в F1000000 ?
Задачу решили:
28
всего попыток:
49
Окружность x2+y2=1 растянули в два раза по горизонтали и получили эллипс x2+4y2=4. При этом действии, площадь фигуры, ограниченной кривой, выросла в два раза. А во сколько раз выросла длина кривой? Ответ округлите до 5-и десятичных знаков после запятой.
Задачу решили:
28
всего попыток:
40
Рассмотрим систему двух неравенств с целочисленными коэффициентами: Ax² + Bx + C ≤ 0 Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?
Задачу решили:
24
всего попыток:
75
Рассмотрим уравнение в целых числах:
Задачу решили:
14
всего попыток:
16
Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»: Например: 16380 ⊕ 7 = [(16380+7) / 214] + (16380+7) mod 214 = 1 + 3 = 4 Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.
Задачу решили:
9
всего попыток:
19
«Докажем», что любое число ε>0 оно не меньше 1. Естественно, это «доказательство» содержит ошибку. Найдите в каком утверждении ошибка. Пусть ε - любое положительное число. 1. Как известно, множество рациональных чисел в отрезке [0, 1] счётно и всюду плотно. 2. Пронумеруем его элементы: r1, r2, r3, ... 3. Построим вокруг них окрестности: mn = (rn – ε/2n+1, rn + ε/2n+1), n=1, 2, 3, ... 4. Рассмотрим множество U – объединение всех этих окрестностей. Его мера m(U) меньше или равна сумме мер составляющих: Σm(mn) = ε. 5. Множество U, как объединение открытых множеств, также является открытым множеством. 6. Как открытое множество на числовой прямой, множество U может быть представимо как объединение конечного или счётного множества взаимно непересекающихся интервалов u1, u2, u3, ... 7. Рассмотрим какие-нибудь два соседних из этих интервалов (т.е. любой один из них + ближайший к нему с той или другой стороны). Они либо лежат вплотную друг к другу, т.е. имеют общий конец, либо между ними есть зазор. 8. Если между ними есть зазор, это означает, что первоначально не были охвачены все рациональные числа. Следовательно, остаётся только вариант общего конца. 9. Таким образом, множество U покрывает весь отрезок [0, 1] кроме не больше чем счётное множество общих концов, имеющее меру 0. 10. Следовательно, мера множества U не меньше 1, и ε ≥ 1.
Задачу решили:
22
всего попыток:
29
Найдите максимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется: 0 < a < b < c < d < e < f < g и 1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.
Задачу решили:
31
всего попыток:
34
При каком максимальном целом k ряд 1k/7 + 2k/7 + 3k/7 + . . . сходится?
Задачу решили:
14
всего попыток:
20
Найдите площадь василька: Контур цветка задаётся в полярных координатах формулой ρ=f(φ), где f(φ) – сумма каких-то трёх членов тригонометрического ряда Фурье (https://ru.wikipedia.org/wiki/Тригонометрический_ряд_Фурье) Площадь василька умножьте на 20000 и введите в ответ целую часть результата.
Задачу решили:
16
всего попыток:
59
Сколько действительных корней имеет уравнение 443113/25000 * cos x = √x?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|