img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 25
всего попыток: 30
Задача опубликована: 04.11.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В каждой из 18-и строк следующей таблицы задана длина стороны равностороннего треугольника - d, и расстояния от некоторой точки на этой же плоскости до трёх вершин треугольника: a, b и c.

#abcd
1 sqrt(3) sqrt(3) sqrt(3) 3
2 sqrt(7) sqrt(421) sqrt(444) 23
3 sqrt(7) sqrt(421) sqrt(513) 23
4 sqrt(13) sqrt(421) sqrt(469) 24
5 sqrt(7) sqrt(463) sqrt(487) 24
6 sqrt(7) sqrt(463) sqrt(559) 24
7 sqrt(13) sqrt(463) sqrt(513) 25
8 sqrt(7) sqrt(507) sqrt(532) 25
9 sqrt(31) sqrt(381) sqrt(556) 25
10 sqrt(7) sqrt(507) sqrt(607) 25
11 sqrt(13) sqrt(507) sqrt(559) 26
12 sqrt(7) sqrt(553) sqrt(579) 26
13 sqrt(7) sqrt(553) sqrt(657) 26
14 sqrt(43) sqrt(421) sqrt(556) 27
15 sqrt(13) sqrt(553) sqrt(607) 27
16 sqrt(7) sqrt(601) sqrt(628) 27
17 sqrt(43) sqrt(421) sqrt(637) 27
18 sqrt(7) sqrt(601) sqrt(709) 27

По этим данным нужно определить для каждой строки, находится ли точка внутри треугольника.

Ответ должен состоять из 18-и нулей и единиц: Каждой строке соответствует "1", если точка находится внутри треугольника, и "0" в противном случае.

Задачу решили: 22
всего попыток: 52
Задача опубликована: 31.03.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Известно, что для каких-то 4-х точек на плоскости существует конечное количество окружностей, от которых они равноудалены. Найдите максимальное возможное значение этого количества.

Задачу решили: 29
всего попыток: 35
Задача опубликована: 16.06.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

На рисунке указаны длины звеньев ломаной в правильном шестиугольнике.

Рядом с ломаной

Длина гипотенузы AC прямоугольного треугольника ABC представима в виде x + y*√3, где x и y – рациональные числа.

Найдите сумму x+y.

Задачу решили: 20
всего попыток: 29
Задача опубликована: 04.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов.

Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами.

Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его:
Sk,m – в формуле синуса суммы k+m углов;
Ck,m – в формуле косинуса суммы k+m углов.

Например:
С0,2 = 1, C1,1 = 0, C2,0 = -1.

Найдите сумму квадратов S579,420 и C579,421

Задачу решили: 25
всего попыток: 48
Задача опубликована: 18.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

На рисунке изображены правильный 6-угольник со стороной 6 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседными звеньями – 60° (см.рисунок).

Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника.

Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев.

Найдите минимально возможное количество звеньев.

Задачу решили: 16
всего попыток: 38
Задача опубликована: 02.03.22 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2295
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько попарно неконгруэнтных правильных шестиугольников определяют эти точки?

Задачу решили: 22
всего попыток: 26
Задача опубликована: 29.07.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение:
((a+b+c)/2)2 - 3r2 - 12Rr, можно представить как многочлен от трёх переменных a, b, c.

Обозначим:
B - произведение коэффициентов этого многочлена.
A - сумма абсолютных величин этих же коэффициентов.
Найдите A+B.

Задачу решили: 11
всего попыток: 18
Задача опубликована: 01.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите f(2³×3³×5³×7³×11³×13³).

Задачу решили: 8
всего попыток: 13
Задача опубликована: 20.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.

Задачу решили: 9
всего попыток: 10
Задача опубликована: 22.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.