Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
30
В каждой из 18-и строк следующей таблицы задана длина стороны равностороннего треугольника - d, и расстояния от некоторой точки на этой же плоскости до трёх вершин треугольника: a, b и c.
По этим данным нужно определить для каждой строки, находится ли точка внутри треугольника. Ответ должен состоять из 18-и нулей и единиц: Каждой строке соответствует "1", если точка находится внутри треугольника, и "0" в противном случае.
Задачу решили:
22
всего попыток:
52
Известно, что для каких-то 4-х точек на плоскости существует конечное количество окружностей, от которых они равноудалены. Найдите максимальное возможное значение этого количества.
Задачу решили:
29
всего попыток:
35
На рисунке указаны длины звеньев ломаной в правильном шестиугольнике. Длина гипотенузы AC прямоугольного треугольника ABC представима в виде x + y*√3, где x и y – рациональные числа. Найдите сумму x+y.
Задачу решили:
20
всего попыток:
29
Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов. Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами. Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его: Например: Найдите сумму квадратов S579,420 и C579,421.
Задачу решили:
25
всего попыток:
48
На рисунке изображены правильный 6-угольник со стороной 6 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседными звеньями – 60° (см.рисунок). Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника. Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев. Найдите минимально возможное количество звеньев.
Задачу решили:
16
всего попыток:
38
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько попарно неконгруэнтных правильных шестиугольников определяют эти точки?
Задачу решили:
22
всего попыток:
26
Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение: Обозначим:
Задачу решили:
11
всего попыток:
18
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите f(2³×3³×5³×7³×11³×13³).
Задачу решили:
8
всего попыток:
13
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.
Задачу решили:
9
всего попыток:
10
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|