Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
19
«Докажем», что любое число ε>0 оно не меньше 1. Естественно, это «доказательство» содержит ошибку. Найдите в каком утверждении ошибка. Пусть ε - любое положительное число. 1. Как известно, множество рациональных чисел в отрезке [0, 1] счётно и всюду плотно. 2. Пронумеруем его элементы: r1, r2, r3, ... 3. Построим вокруг них окрестности: mn = (rn – ε/2n+1, rn + ε/2n+1), n=1, 2, 3, ... 4. Рассмотрим множество U – объединение всех этих окрестностей. Его мера m(U) меньше или равна сумме мер составляющих: Σm(mn) = ε. 5. Множество U, как объединение открытых множеств, также является открытым множеством. 6. Как открытое множество на числовой прямой, множество U может быть представимо как объединение конечного или счётного множества взаимно непересекающихся интервалов u1, u2, u3, ... 7. Рассмотрим какие-нибудь два соседних из этих интервалов (т.е. любой один из них + ближайший к нему с той или другой стороны). Они либо лежат вплотную друг к другу, т.е. имеют общий конец, либо между ними есть зазор. 8. Если между ними есть зазор, это означает, что первоначально не были охвачены все рациональные числа. Следовательно, остаётся только вариант общего конца. 9. Таким образом, множество U покрывает весь отрезок [0, 1] кроме не больше чем счётное множество общих концов, имеющее меру 0. 10. Следовательно, мера множества U не меньше 1, и ε ≥ 1.
Задачу решили:
12
всего попыток:
21
Множество A={a,b,c} содержит 3 элемента. Его запись занимает 7 символов. Множество B это множество всех подмножеств множества A. Его запись: {{},{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}} занимает 42 символа. Множество C это множество всех подмножеств множества B. Сколько символов занимает запись множества C?
Задачу решили:
31
всего попыток:
34
При каком максимальном целом k ряд 1k/7 + 2k/7 + 3k/7 + . . . сходится?
Задачу решили:
14
всего попыток:
20
Найдите площадь василька: Контур цветка задаётся в полярных координатах формулой ρ=f(φ), где f(φ) – сумма каких-то трёх членов тригонометрического ряда Фурье (https://ru.wikipedia.org/wiki/Тригонометрический_ряд_Фурье) Площадь василька умножьте на 20000 и введите в ответ целую часть результата.
Задачу решили:
21
всего попыток:
27
В куб вписан правильный октаэдр наибольшего объёма. В каком отношении вершины октаэдра делят ребра этого куба? В ответе укажите отношение меньшей части к большей.
Задачу решили:
20
всего попыток:
27
Сколько существует прямоугольных параллелепипедов с целочисленными измерениями, у которых числовые значения площади поверхности и объема равны?
Задачу решили:
16
всего попыток:
59
Сколько действительных корней имеет уравнение 443113/25000 * cos x = √x?
Задачу решили:
19
всего попыток:
33
На экзамене два преподавателя принимают экзамен у студентов. Один принимает только теорию, а второй только практику. Время затрачиваемое каждым преподавателем на прием теории, либо практики одинаковое. Через равные промежутки в аудиторию заходят по два студента, сдают экзамен (один из них теорию, второй практику), потом уходят, заходят следующие так далее. Т.е. каждый студент должен зайти в аудиторию два раза. Перед экзаменом студенты случайным образом разыгрывают между собой номера в очереди к каждому преподавателям. Найдите вероятность того, что полученное таким образом расписание для 8 студентов не сможет быть выполнено.
Задачу решили:
21
всего попыток:
49
При последовательном подбрасывании монеты, после каждого броска сравнивают количество ранее выпавших орлов и решек и подсчитывают сколько раз эти количества совпадали. Например, если монета выпадала так: ОРОРРРР (О - орел, Р - решка), то количество таких совпадений равно 2, а если РРРРОРОР, то количество совпадений равно 0. Пусть n - это количество бросков монеты, а F(n) это среднее количество совпадений (или математическое ожидание количества совпадений). Тогда: F(1) = 0/2 = 0, Найдите минимальное n при котором F(n) будет больше или равно 3
Задачу решили:
11
всего попыток:
17
4 параллельных прямых расположены на плоскости одна за другой на одинаковых растояниях. 4 других параллельных прямых, не параллельных предыдущим прямым, также расположены на той же плоскости одна за другой на одинаковых растояниях. Наконец, третья группа 4-х параллельных прямых, не параллельных предыдущим, тоже расположены на той же плоскости одна за другой на одинаковых растояниях. Эти 12 прямых делят плоскость на n областей. Найдите сумму всех возможных значений n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|