Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
73
Троих подозреваемых (1, 2 и 3) спросили, кто из них украл серебряные ложки. Один из них всегда говорит правду, второй всегда говорит правду, кроме случая, когда он в чем-то виноват и ему задают прямой вопрос об его вине, то он уклоняется от прямого ответа, хотя и не врет, а третий - лжец, который в ответ на любой вопрос врет и при этом может как уклоняться или не уклоняться от ответа. Всем им был задан вопрос "Виновны ли Вы в краже?"
Задачу решили:
21
всего попыток:
64
У кладовщика есть 120 кг сахара, двухчашечные весы и гиря на 8 кг. За какое минимальное количество взвешиваний можно отвесить 35 кг сахара?
Задачу решили:
32
всего попыток:
56
Среди 100 жителей осторова есть те, кто всегда говорят правду и те, кто всегда лгут. На вопрос гостя острова о том, сколько жителей осторова говорят правду, все жители дали ответы, при этом n-й по счету отвечающий утверждал, что на острове количество говорящих правду равно n2 по модулю 100. Сколько на острове лжецов?
Задачу решили:
32
всего попыток:
39
Переложите одну спичку, чтобы равенство стало верным.
Задачу решили:
37
всего попыток:
60
В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке. При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?
Задачу решили:
25
всего попыток:
138
На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке. Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?
Задачу решили:
63
всего попыток:
103
Дата 10.02.2001 (ДД.ММ.ГГГГ), если убрать точки превращается в палиндром 10022001 (читается одинаково слева направо и справа налево). Найдите ближайшую предыдущую дату, которая обладает таким же свойством. В качестве ответа введите полученное из неё число (без точек).
Задачу решили:
26
всего попыток:
96
Десять пронумерованных фишек расположены в форме треугольника. За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?
Задачу решили:
21
всего попыток:
59
Цифоы на табло состоят из линейных световых сегментов, как показано на рисунке. При переключении цифр часть сегментов загорается, часть гаснет, например, чтобы переключить 3 на 4, нужно провести 3 операции - один сегмент включить и два погасить. Чтобы последовательно показать все цифры и вернуться к начальной (01234567890), то необходимо некоторое количество операций. Найдите такую последовательность цифр (должны присутствовать все цифры по одному разу, кроме крайних - они показываются 2 раза), что число операций для их последовательного переключения было бы минимальным. Если таких последовательностей несколько, то укажите ту, которая представляет наименьшее число.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|