Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
66
В окружность Q целочисленного радиуса вписан четырехугольник ABCD, длины всех сторон которого - попарно различные целые числа. Более того, целочислены и длины диагоналей AC и BD. Пусть E - точка пересечения касательной к окружности Q, проведенной через точку C, с продолжением стороны AD. Угол AEC равен углу ACD, и ABCD - четырехугольник минимальной площади, удовлетворяющий всем этим условиям. Найти произведение площадей треугольников DAB и DCB.
Задачу решили:
49
всего попыток:
61
Все 80 натуральных делителей натурального числа n расположили в порядке возрастания. Оказалось, что делители с первого по четвертый образуют геометрическую прогрессию, делители с четвертого по седьмой - арифметическую прогрессию, а восьмой делитель меньше 200. Найти n.
Задачу решили:
46
всего попыток:
60
Круг разбили ста хордами так, что никакие три хорды не пересекаются в одной точке, при этом при этом всего было сто точек пересечений хорд. На какое наибольшее число областей разобьется круг?
Задачу решили:
11
всего попыток:
426
Сколько существует различных вписанных четырёхугольников ABCD, для которых AB=DA+BC=1, а величины углов DAB и ABC в градусах целочисленные?
Задачу решили:
55
всего попыток:
75
Точки M и N делят сторону BC треугольника ABC на три равные части (|BM| = |MN| = |NC|). Точка F — середина отрезка AN. Прямая, проходящая через F и параллельная AC, пересекает AB в точке D, а AM — в точке E. Найдите отношение |EF|/|ED|.
Задачу решили:
17
всего попыток:
444
Найти наибольшее целое число N для которого существует N троек неотрицательных целых чисел (ai, bi, ci) (i=1...N) таких, что: для всех 1 ≤ i≠j ≤ N, ai≠aj, bi≠bj, ci≠cj; для всех 1 ≤ i ≤ N, ai+bi+ci=2014.
Задачу решили:
58
всего попыток:
84
Сколько всего пар натуральных чисел (n,m) таких, что 1 ≤n,m≤100 и nm=mn?
Задачу решили:
36
всего попыток:
56
Стороны треугольника a > b > c являются целыми числами и удовлетворяют условию f(3a/10000)=f(3b/10000)=f(3c/10000), где f(x)=x-[x] ([x] - целая часть x). Найти минимум периметра такого треугольника.
Задачу решили:
46
всего попыток:
78
В остроугольном треугольнике, площадь которого равна 1, с каждой вершины на противоположные стороны опущены чевианы. Каждая из них делит сторону в соотношении 1:4. Эти чевианы (отрезки) внутри треугольника образовали треугольник. Найдите площадь этого треугольника.
Задачу решили:
40
всего попыток:
262
Стрелочные часы с тремя стрелками - часовой, минутной и секундной имеют плавный ход, то есть стрелки движутся плавно, без скачков по делениям. Определите, сколько существует моментов времени (чч:мм:сс:мкс и т.д.) углы между часовой и минутной, минутной и секундной и секундной и часовой составляют ровно 120 градусов.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|