img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 213
Задача опубликована: 08.08.11 08:00
Прислал: zmerch img
Источник: Всеукраинские олимпиады школьников
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Единичный вектор проектируется на прямые, содержащие диагонали правильного одиннадцатиугольника. Сумма указанных проекций образует вектор a. Найти максимальное значение длины вектора a.

Задачу решили: 58
всего попыток: 133
Задача опубликована: 17.08.11 08:00
Прислал: zmerch img
Источник: Всеукраинские олимпиады школьников
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg

Многочлен вида a0xn+a1xn−1+…+an, назовём однообразным, если n>0, а каждый из его n+1 коэффициентов и каждый из его n корней равен 1 или −1. Сколько существует различных однообразных многочленов?

Задачу решили: 48
всего попыток: 135
Задача опубликована: 21.09.11 08:00
Прислал: zmerch img
Источник: Задачи 550, 573
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Каждую грань параллелепипеда 3х5х7 разбили на единичные квадратики, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.

Задачу решили: 51
всего попыток: 141
Задача опубликована: 14.03.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите максимальное целочисленное значение длины диагонали многогранника, если сумма длин его рёбер равна 2012.

Задачу решили: 66
всего попыток: 135
Задача опубликована: 26.03.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Решите систему уравнений:
y=2x+x2y,
x+y3=3xy2+3y.

В ответе укажите максимальное значение 10(x+y), округленное до ближайшего целого.

Задачу решили: 36
всего попыток: 142
Задача опубликована: 05.05.12 08:00
Прислал: zmerch img
Источник: ВЗМШ
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.

Задачу решили: 31
всего попыток: 48
Задача опубликована: 18.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ChLD (Анатолий Лакеev)

Коэффициенты an приведённого многочлена P(x)=x2012+a1x2011+...+a2012 удовлетворяют условию

||an|-1|<1/2012  при   n=1,...,2012. 

Найдите максимальное количество отрицательных коэффициентов многочлена P(x) при условии, что действительных корней у него нет.

Задачу решили: 15
всего попыток: 727
Задача опубликована: 30.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.

Задачу решили: 44
всего попыток: 86
Задача опубликована: 26.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Для функции f(x) при x>1 выполняется равенство: 
f(x2-1)+2f((2x-1)/(x-1)2)=2-4/x+3/x2. Найдите максимальное значение 100f(3/2).

Задачу решили: 40
всего попыток: 79
Задача опубликована: 31.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите количество подмножеств множества натуральных чисел {1,2,...,37} с суммой элементов, делящейся на 74.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.