Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
41
Длина стороны равностороннего треугольника равна d. Внутри треугольника есть точка, расстояния от которой до вершин треугольника равны a, b, c. Найдите полином 4-й степени от 4-х переменных a, b, c, d, для которого выполняется: P(a,b,c,d)=0 для любого равностороннего треугольника и любой точки внутри него. В качестве ответа введите сумму абсолютных величин всех его коэффициентов, если коэффициент при d4 равен 1.
Задачу решили:
25
всего попыток:
30
В каждой из 18-и строк следующей таблицы задана длина стороны равностороннего треугольника - d, и расстояния от некоторой точки на этой же плоскости до трёх вершин треугольника: a, b и c.
По этим данным нужно определить для каждой строки, находится ли точка внутри треугольника. Ответ должен состоять из 18-и нулей и единиц: Каждой строке соответствует "1", если точка находится внутри треугольника, и "0" в противном случае.
Задачу решили:
11
всего попыток:
39
Найдите количество решений в целых числах уравнения: Симметричные решения, получаемые одно из другого перестановкой переменных, считать различными.
Задачу решили:
18
всего попыток:
36
Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021? На рисунке изображён пример квадрата в точечной сетке 5x8.
Задачу решили:
28
всего попыток:
40
Рассмотрим систему двух неравенств с целочисленными коэффициентами: Ax² + Bx + C ≤ 0 Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?
Задачу решили:
26
всего попыток:
33
Определителем таблицы из 9-и чисел: Дано число: n = 10100 + 1. Рассмотрим всевозможные таблицы указанного выше вида, когда каждый из 9-и чисел равен либо 1, либо n. Пусть их наибольший определитель равен x. Найдите сумму цифр числа x.
Задачу решили:
20
всего попыток:
29
Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов. Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами. Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его: Например: Найдите сумму квадратов S579,420 и C579,421.
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
24
всего попыток:
75
Рассмотрим уравнение в целых числах:
Задачу решили:
29
всего попыток:
33
Обозначим: Например: Также обозначим: Например: Найдите сумму S1 + S2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|