Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
47
всего попыток:
90
На сторонах прямоугольного треугольника вне его построены три квадрата. Стороны квадрата ABCD параллельны катетам треугольника и делят площадь каждого из трёх квадратов на две равные части. Найдите сторону квадрата ABCD, если катеты данного треугольника равны 18 и 126.
Задачу решили:
45
всего попыток:
91
На почтовой марке, посвященной Международному математическому конгрессу 1998 года в Берлине, изображено разбиение прямоугольника на 11 квадратов с целочисленными сторонами. Найдите длину стороны наибольшего квадрата, если длина стороны самого маленького квадрата принимает наименьшее целое значение.
Задачу решили:
53
всего попыток:
72
Ёлочка, изображенная на рисунке, получается из квадрата в результате бесконечного процесса следующим образом: квадрат по диагонали разрезается на два треугольника, один из них ложится в основание ёлочки, второй разрезается на два равных треугольника, один из них идет на построение ёлочки, второй разрезается на два равных треугольника, и так строится постоянно растущая ёлочка. Найдите величину угла АЕС. Ответ выразите в градусах, округлив до ближайшего целого числа.
Задачу решили:
24
всего попыток:
164
Гипотрохоида - плоская кривая, задаваемая фиксированной точкой круга, который катится без скольжения по внутренней стороне другой окружности. Гипротрохоиды можно рисовать с помощью спирографа. На рисунке слева изображено кольцо и диск спирографа. Чтобы диск при движении не скользил, на нем и на внутренней окружности кольца сделаны зубья. Карандаш, вставленный в одно из отверстий диска, при вращении оставляет на бумаге след - гипотрохоиду, здесь незаконченная красная линия. На рисунке справа изображена одна из гипотрохоид. Она нарисована другой парой спирографа, на внутренней окружности кольца которого имеется 96 зубьев. Сколько зубьев на диске?
Задачу решили:
32
всего попыток:
49
Дан треугольник A1A2A3 со сторонами A1A2=21, A2A3=17, A1A3=10. Воробей вначале сел в точку A4 пересечения медиан треугольника A1A2A3, затем прыгнул в точку A5 пересечения медиан треугольника A2A3A4, затем прыгнул в точку A6 пересечения медиан треугольника A3A4A5, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке A. Найдите сумму квадратов расстояний от точки A до всех вершин треугольника A1A2A3.
Задачу решили:
42
всего попыток:
58
Вершину С правильного треугольника АВС соединили отрезком с точкой M, делящей сторону AB в отношении 3:5. В образовавшиеся при этом два треугольника вписали круги, площадь меньшего из них равна 52. Найдите площадь большего круга.
Задачу решили:
43
всего попыток:
69
Два благородных крокодильчика начинают поедать с двух концов единичный отрезок по следующей схеме: первый со своего конца откусывает 1/2 отрезка, второй со своего конца откусывает 1/3 оставшейся части отрезка, затем первый откусывает 1/4 остатка, второй откусывает 1/5 остатка, и т.д. Какую часть отрезка съест первый крокодильчик? Ответе укажите в процентах, округлив его до целого.
Задачу решили:
21
всего попыток:
70
Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева). Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.
Задачу решили:
38
всего попыток:
51
Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок). Найдите ординату точки А.
Задачу решили:
25
всего попыток:
88
При некоторых значениях k на синусоиде y= ksinx можно расположить квадрат, все вершины которого лежат на синусоиде, а его центр совпадает с началом координат. Один из квадратов изображен на рисунке. Сколько таких квадратов существует при k =14?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|