Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
1469
всего попыток:
2235
Сколько нужно провести матчей по олимпийской системе (проигравший вылетает), чтобы из 30 футбольных команд определить победителя?
Задачу решили:
116
всего попыток:
395
На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?
Задачу решили:
1313
всего попыток:
3356
В пруду плавают 30 голодных щук. Есть больше нечего, и им приходится пожирать друг друга. Щука считается сытой, если она съела не менее трёх щук (сытых или голодных — неважно). Какое наибольшее число щук смогут насытиться?
Задачу решили:
319
всего попыток:
728
На 50 деревянных правильных пятиугольников, прибитых к полу, натягивается резиновое кольцо, которое принимает форму некоторого многоугольника. Каково минимальное число его вершин?
(Условие задачи изменено, поскольку прежняя формулировка вызывала много вопросов. )
Задачу решили:
132
всего попыток:
436
В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений. Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.
Задачу решили:
166
всего попыток:
397
Прямоугольный лист бумаги разрезают по прямой на две части. Одну из частей разрезают по прямой на две части. Одну из трёх полученных частей снова разрезают по прямой на две части. Одну из четырёх полученных частей снова разрезают по прямой на две части, и т.д. Какое наименьшее число разрезов нужно сделать, чтобы получить 100 семиугольников?
Задачу решили:
264
всего попыток:
502
В выборах в стоместный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов (т.е. если одна из партий набрала в x раз больше голосов, чем другая, то и мест в парламенте она получит в x раз больше). После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т.п. не было) и каждая партия получила целое число мест. При этом Партия участников проекта "Диофант" набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?
Задачу решили:
158
всего попыток:
508
Про некоторую рощу известно, что расстояние между любыми двумя деревьями не превосходит утроенной разности их высот, а все деревья имеют высоту не более 100 м. Какова минимальная длина забора, которого заведомо хватит, чтобы обнести эту рощу? (Дайте ответ в метрах.)
Задачу решили:
677
всего попыток:
1803
На каждом километре шоссе, соединяющего города А и Б стоит столбик с табличкой, на одной стороне которой написано, сколько километров до А, на другой — до Б. Известно, что на каждом столбике сумма всех цифр равна 17. Какова длина шоссе?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|