img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "Египетские медианы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 80
всего попыток: 150
Задача опубликована: 01.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).

Задачу решили: 44
всего попыток: 237
Задача опубликована: 07.11.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.

Задачу решили: 83
всего попыток: 225
Задача опубликована: 29.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish

Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.

+ 7
  
Задачу решили: 12
всего попыток: 118
Задача опубликована: 29.11.09 15:50
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.

Задачу решили: 42
всего попыток: 47
Задача опубликована: 12.12.09 21:56
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?

Задачу решили: 38
всего попыток: 145
Задача опубликована: 20.12.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два различных числа называются похожими, если их десятичные записи совпадают во всех разрядах, кроме одного. Найдите максимальное количество семизначных чисел, среди которых нет двух похожих. 

Задачу решили: 52
всего попыток: 77
Задача опубликована: 31.12.09 01:38
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На доске написаны два числа: 0 и 1. На первом шаге напишем между ними их сумму и получим: 0 1 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Таким образом, после второго шага получим: 0 1 1 2 1, после третьего — 0 1 1 2 1 3 2 3 1 и т.д. Найдите сумму всех чисел, написанных после n шагов.

(Пожалуйста, не присылайте файлов!)
Задачу решили: 120
всего попыток: 274
Задача опубликована: 13.01.10 21:24
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

К положительному целому числу x, записанному в десятичной системе исчисления без незначащих нулей впереди, приписали это же число и получили десятичную запись нового числа y — дубля x. (Например, если x=12, то y=1212.) Найдите сумму всех различных целых значений дроби y/x2.

Задачу решили: 64
всего попыток: 144
Задача опубликована: 29.01.10 22:37
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).

Задачу решили: 61
всего попыток: 254
Задача опубликована: 08.02.10 21:49
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.