img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 51
Задача опубликована: 05.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколькими способами можно разменять 1 рубль, имея монеты 1, 2, 10, 20 и 50 копеек?

Задачу решили: 27
всего попыток: 52
Задача опубликована: 17.04.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Решите неравенство:  А(х) / В(х) <= 0, где числитель
A(x) = (|x – 1| – |x – 3|)2*(|x + 2| – |x + 1|)*(|x + 2| – |x + 3|),
а знаменатель B(x) = (|x – 4| – |x + 1|)*(|x + 4| – |x – 2|).

В качестве ответа укажите значение выражения |m1| + |m2| + …, где m1, m2, …– середины ненулевой длины конечных промежутков решения неравенства.

Задачу решили: 42
всего попыток: 53
Задача опубликована: 01.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Трехзначное число делится на 11 без остатка. При этом частное равно сумме квадратов цифр делимого. Найдите сумму всех таких трехзначных чисел.

Задачу решили: 38
всего попыток: 49
Задача опубликована: 08.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите наибольшее p при котором уравнение
(x2-p)1/2+2(x2-1)1/2=x
имеет действительные корни. 

Задачу решили: 22
всего попыток: 81
Задача опубликована: 03.07.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.

Задачу решили: 22
всего попыток: 41
Задача опубликована: 14.08.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Длина стороны равностороннего треугольника равна d. Внутри треугольника есть точка, расстояния от которой до вершин треугольника равны a, b, c.

Найдите полином 4-й степени от 4-х переменных a, b, c, d, для которого выполняется: P(a,b,c,d)=0 для любого равностороннего треугольника и любой точки внутри него.

В качестве ответа введите сумму абсолютных величин всех его коэффициентов, если коэффициент при d4 равен 1.

Задачу решили: 26
всего попыток: 45
Задача опубликована: 26.08.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Сколько точек с целочисленными координатами находится внутри области, ограниченной параболой  у=2020-х2 и осью Ох?

Задачу решили: 28
всего попыток: 47
Задача опубликована: 31.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В прямой круговой конус объема V вписан шар. Около этого шара описан прямой круговой цилиндр, основание которого лежит в плокости основания конуса, а объем его равен U. Найдите минимально возможное k такое, что V=kU.

Задачу решили: 32
всего попыток: 35
Задача опубликована: 07.09.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите многочлен наименьшей степени с целыми коэффициентами и коэффициенте 1 при старшей степени, корнем которого явлется число 21/2+31/2. В качестве ответа введите сумму его коэффициентов.

Задачу решили: 29
всего попыток: 36
Задача опубликована: 09.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Учитель дал детям три задачи: A, B, C. 25 школьников решили хотя бы одну задачу. Среди школьников, не решивших задачу A, но решивших B, в два раза больше, чем решивших C. Школьников, решивших только задачу A, на одного больше, чем остальных школьников, решивших задачу A. Сколько школьников решили только задачу B, если среди школьников, решивших только одну задачу, половина не решила задачу A?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.