Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
36
Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.
Задачу решили:
26
всего попыток:
118
На каждой ветви графика уравнения |xy|=k взято по одной точке A, B, C и D так, что получился квадрат ABCD, со стороной k и имеющий с графиком общими точками только вершины. Найдите наибольшую площадь такого квадрата.
Задачу решили:
38
всего попыток:
51
Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок). Найдите ординату точки А.
Задачу решили:
30
всего попыток:
95
В квадрате построена 13-звенная ломаная, концами которой являются его диагональные вершины и соседние звенья перпендикулярны. Длины её звеньев – это целые числа от 1 до 13. В каком отношении эта ломаная делит площадь квадрата? В ответе укажите отношение площади желтой части к зеленой.
Задачу решили:
27
всего попыток:
44
Внутри цилиндра расположен куб ABCDA1B1C1D1 так, что все его вершины лежат на поверхности цилиндра, причем вершины B и D1 совпадают с центрами оснований, а остальные вершины лежат на боковой поверхности цилиндра. Найдите объем цилиндра, если квадрат ребра куба равен 27. Объём цилиндра будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
27
всего попыток:
36
В равнобедренном треугольнике ABC с основанием AC=10, высотой BD=10 вписаны квадраты KLMN и DPRQ. Если треугольник ABC перегнуть по высоте BD, то треугольники ABD и BDC совпадут при наложении, а квадраты частично перекроются. Найдите площадь общей части квадратов KLMN и DPRQ в этом случае.
Задачу решили:
27
всего попыток:
58
В квадрате ABCD расположена окружность. Из вершин квадрата к окружности проведены отрезки касательных, на которых построены четыре равносторонних треугольника (см. рис.). Три из них имеют площади 15, 20, 42. Найдите площадь четвертого треугольника.
Задачу решили:
19
всего попыток:
48
Три попарно неравных квадрата площади S1, S2 и S3 имеют общую вершину (и только её), при этом вершины всех квадратов расположены в узлах квадратной решетки 1х1. Ближайшие вершины соседних квадратов соединены отрезками, на которых построены ещё три квадрата, площадь каждого из них равна 10 (смотрите рисунок). Найдите наименьшее значение суммы S1+S2+S3 и укажите его в ответе.
Задачу решили:
37
всего попыток:
52
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим треугольные рамки, у которых одна вершина совпадает с вершиной пирамиды, две стороны параллельны боковым сторонам пирамиды, третья сторона содержит n-ую строку числовой пирамиды. На рисунке показана 6-ая рамка. Чему равна сумма всех чисел в 123-ей треугольной рамке?
Задачу решили:
29
всего попыток:
37
Таблица Пифагора – это квадратная таблица, в каждой ячейке которой записано число, равное произведению номера строки и номера столбца. Побочная диагональ разбивает таблицу на две треугольные области. Найдите отношение суммы чисел, расположенных выше и левее побочной диагонали таблицы 100х100 к сумме чисел, расположенных ниже и правее побочной диагонали этой таблицы. Для примера, все числа побочной диагонали выделены зеленым цветом на таблице 9х9.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|