Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
46
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?
Задачу решили:
59
всего попыток:
133
Найти количество вариантов расстановки всех 9-ти цифр вместо звездочек (каждая цифра используется один раз), при которых одновременно превращаются в числовые тождества все три строки: * × * = *
Задачу решили:
23
всего попыток:
30
Внутри треугольника ABC размещена точка D так, что величины углов DAC, DAB, DBA равны, соответственно, 24, 30 и 18 градусов, |CD| = |CB|. Найдите величину угла CDB в градусах.
Задачу решили:
15
всего попыток:
64
Разрежьте равнобедренную трапецию с основаниями 49 и 29 см, боковой стороной 26 см на три подобные между собой трапеции всевозможными способами. Два разрезания не считать различными, если их линии разрезов симметричны относительно оси симметрии трапеции. Ответом задачи есть сумма длин линий разрезов всех возможных способов разрезания, округленная до целого числа сантиметров.
Задачу решили:
34
всего попыток:
70
Сколько всего четырёхугольников (включая невыпуклые) составляют линии в треугольнике?
Задачу решили:
45
всего попыток:
170
Площадь и периметр треугольника одно и то же минимальное целое число. Найдите это число.
Задачу решили:
18
всего попыток:
22
Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β.
Задачу решили:
34
всего попыток:
47
Обезьянке, у которой не было ни одного кокоса, вечером подарили волшебное дерево. С дерева каждый день рано утром падает один кокос. На рынке в середине дня можно купить новое точно такое же дерево - оно стоит 12 кокосов. Уже на следующий день рано утром новое дерево даст первый кокос. Обезьянка хочет накопить 48 кокосов, и она придумала способ, как сделать это за наименьшее число дней. На какой по счёту день обезьянка накопит не меньше 48 кокосов? Замечание: Первым считаем день, когда обезьянке подарили дерево (а первый кокос появился у обезьянки на второй день). Продавать деревья нельзя.
Задачу решили:
15
всего попыток:
20
Для произвольного треугольника ABC есть внутренняя точка K, являющаяся общей вершиной трех равных квадратов, по две остальные вершины которых лежат на сторонах треугольника. Если описать окружность с центром в этой точке и радиусом, равным стороне квадрата, - она пересечёт стороны треугольника как раз в этих шести вершинах. Найдите квадрат радиуса этой окружности для треугольника со сторонами (7,15,20).
Задачу решили:
28
всего попыток:
31
Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|