img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 48
Задача опубликована: 10.11.21 08:00
Прислал: avilow img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Любитель кубика Рубика снял все 54 наклейки с кубика 3х3х3 и переклеил их вновь в случайном порядке. Какова вероятность собрать такой кубик Рубика? Собранным считается кубик, у которого все грани одного цвета. В качестве ответа введите число из первых трёх цифр вероятности, опуская начальные нули. Например, если вероятность равна 0,00040756…, то в ответ вносится число 407.

Задачу решили: 30
всего попыток: 45
Задача опубликована: 20.12.21 08:00
Прислал: admin img
Источник: В. И. Арнольд, "Задачи для детей от 5 до 15 л...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)

Задачу решили: 26
всего попыток: 35
Задача опубликована: 13.06.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найти наименьшее натуральное число, сумма собственных делителей которого равна 106.

Собственным делителем считается делитель числа, меньший самого числа.

Задачу решили: 37
всего попыток: 53
Задача опубликована: 12.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти две последние цифры значения выражения 1100+2100+3100+...+100100.

Задачу решили: 28
всего попыток: 29
Задача опубликована: 22.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть p - простое число, а n - целое положительное число и
(p−4)(p+1)(p+3)=(n−4)(n+4). Найдите сумму всех p.

Задачу решили: 23
всего попыток: 34
Задача опубликована: 09.01.23 00:08
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

1) Пусть a - число 5-значных чисел, кратных 3, которые не содержат цифры 2.
2) Пусть b - число 5-значных чисел, кратных 5, которые не содержат цифры 0.
3) Пусть c - число 5-значных чисел, кратных 7, которые не содержат цифры 2.
4) Пусть d - число 5-значных чисел, кратных 9, которые не содержат цифры 3.
Найдите a + b + c + d.

Задачу решили: 10
всего попыток: 30
Задача опубликована: 08.01.24 08:00
Прислал: Sam777e img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: mikev

На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы мы увидели все эти 4 символа (в любой последовательности)?

Задачу решили: 20
всего попыток: 33
Задача опубликована: 19.02.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Суммы цифр натуральных чисел N и N+1 кратны 22. Найдите наименьшее число N. 

Задачу решили: 19
всего попыток: 72
Задача опубликована: 15.07.24 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Дедушке прописали принимать по полтаблетки каждый день в течение 60 дней. В пузырьке было 30 целых таблеток. В первый день он вытряхнул из пузырька таблетку и разломал ее пополам, одну половинку принял, а вторую положил обратно в пузырёк. Каждый следующий день он случайным образом вытряхивал из пузырька таблетки - если это оказывалась целая таблетка, то он ее разламывал и принимал половинку, а вторую клал в пузырёк, если выпадала половинка, то он принимал её. На какой день с вероятностью не менее 1/2 выпадет половинка таблетки? 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.