Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
17
Имеется таблица 1000 х 1000, все клетки которой изначально пусты. Два игрока-терминатора соревнуются в следующей игре. За один ход можно записать в любую незанятую клетку таблицы любое натуральное число от 1 до 106, если такого числа еще нет в таблице. Игроки записывают числа, пока не заполнят всю таблицу. Пусть А количество строк, в каждой из которых сумма чисел делится нацело на 106, а В – количество столбцов, в каждом из которых сумма чисел делится нацело на 106. Первый игрок выигрывает, если А > В, иначе выигрывает второй игрок. Кто из игроков сможет выиграть независимо от игры соперника? (Укажите номер победителя: 1 или 2.)
Задачу решили:
28
всего попыток:
94
По кругу написаны 29 ненулевых цифр. Из каждой пары соседних цифр составили двузначное число (при обходе по часовой стрелке первая цифра - число десятков, вторая - число единиц). При этом произведение получившихся 29 чисел является полным квадратом натурального числа. Найти минимальную сумму всех цифр.
Задачу решили:
41
всего попыток:
75
Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18. Найти X+Y.
Задачу решили:
39
всего попыток:
76
Найдите положительный остаток при делении 666666777777 на 1464851.
Задачу решили:
42
всего попыток:
53
Трехзначное число делится на 11 без остатка. При этом частное равно сумме квадратов цифр делимого. Найдите сумму всех таких трехзначных чисел.
Задачу решили:
30
всего попыток:
39
Найдите наибольшее натуральное число n<100 не представимое в виде a*b+b*c+c*a , где a, b, c - натуральные числа
Задачу решили:
23
всего попыток:
40
Костя выписал в строчку без пробелов все натуральные числа от 1 до N, а потом вычеркнул из строчки N одинаковых цифр. При каком наименьшем N>1 это могло случиться?
Задачу решили:
30
всего попыток:
45
Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)
Задачу решили:
26
всего попыток:
35
Найти наименьшее натуральное число, сумма собственных делителей которого равна 106. Собственным делителем считается делитель числа, меньший самого числа.
Задачу решили:
37
всего попыток:
53
Найти две последние цифры значения выражения 1100+2100+3100+...+100100.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|