img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 14
всего попыток: 19
Задача опубликована: 12.10.22 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: solomon

Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления.
При этом исходный треугольник оказался разделен на части.

Треугольники в треугольнике - 2

На рисунке приведен (для иллюстрации) равносторонний треугольник со стороной 7, в который вписаны 6 меньших равносторонних треугольников.

Обозначим: Tk – количество внутренних точек пересечения отрезков (сторон вписанных треугольников), через которые проходят ровно k отрезков. Найдите количество частей, на которые разделён исходный треугольник, если известно, что T2 = 2996676, T3 = 72 и T4 = 18.

Задачу решили: 31
всего попыток: 39
Задача опубликована: 27.01.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 - под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин, одновременно над водой яблоко начинает есть птичка со скоростью 45 г/мин. Какая часть яблока достанется рыбке?

Задачу решили: 19
всего попыток: 23
Задача опубликована: 10.03.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Рассмотрим бесконечную клетчатую плоскость, по линиям сетки которой нарисована спираль шириной в одну клетку, закручивающаяся по часовой стрелке (см рис.).

Кантование кубика

Имеется игральный кубик с числами 1, 2, 3, 4, 5 и 6 (обозначены точками), в котором сумма очков на противоположных гранях равна 7. Размер грани кубика совпадает с размером клетки плоскости. В начальную клетку спирали поставлен игральный кубик так, что на его верхней грани расположена 1, на передней — 4, на правой — 5. Кубик, перекатываясь через ребро, попадает в следующую клетку по спирали, и так далее, двигаясь по клеткам нарисованной спирали. В каждую клетку спирали вписывается число, расположенное на верхней грани игрального кубика, прокатившегося по ней, и таким образом, задается последовательность: 1, 2, 3, 1, 4, 2, …, в которой a9=4. Найдите пятизначное число, у которого число единиц равно a1, число десятков - a10, число сотен – a100, число тысяч - a1000, число десятков тысяч - a10000.

Задачу решили: 20
всего попыток: 24
Задача опубликована: 27.03.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Lec

На плоскости Вася провел 100 параллельных прямых, Петя провел еще 100 прямых. Все эти 200 прямых разделили плоскость на несколько частей. Какое наибольшее число частей могло получиться у них при делении плоскости этими прямыми?

200 прямых плоскости

Например, если мальчики провели по две прямые, то плоскость может быть разделена максимум на 10 частей (см. рис.).

Задачу решили: 10
всего попыток: 21
Задача опубликована: 12.04.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В выпуклом четырёхугольнике Q два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой.

Обозначим: m – длина стороны квадрата, равновеликого четырёхугольнику Q.

Для каждой точки M на периметре Q определим: f(M) – количество таких точек P на периметре Q, что |MP|=m. Например, для точки M, изображённой на рисунке:

Чудо-четырёхугольник - 4

 есть ровно две точки P1 и P2, расстояние которых до M равно m. Следовательно, для этой точки M имеет место f(M)=2.

Для каждого целого числа k определим функцию g(k) таким образом:
– Если есть конечное число точек M на периметре Q, для которых f(M)=k, то g(k) равно этому конечному числу.
– Если есть бесконечно много точек M на периметре Q, для которых f(M)=k, то определяем g(k)=100.

 Найдите сумму k*g(k) по всем k.

Задачу решили: 16
всего попыток: 31
Задача опубликована: 14.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В координатной плоскости Oxy расположена парабола y=x2. На ось Оy «нанизаны» 13 квадратов так, что две вершины каждого квадрата, лежат на оси параболы, а две другие принадлежат параболе. При этом размеры квадратов подобраны так, что нижние вершины квадратов имеют ординаты 0, 1, 2, 3, … , 12. На сколько частей границы этих квадратов делят внутреннюю часть параболы y=x2.

Квадраты в параболе

Например, на рисунке показано, что три первых квадрата делят внутреннюю часть параболы y=x2 на 13 частей.

Задачу решили: 13
всего попыток: 23
Задача опубликована: 24.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждый шаг итерации удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. На рисунке приведена кривая дракона после шести итераций.

Кривая дракона в прямоугольнике

Эта ломаная помещается в наименьший прямоугольник размером 7х11 и площадью 77. Какова площадь наименьшего прямоугольника, в котором помещает кривая дракона после 13 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона.

Подробней смотрите статью в Википедии «Кривая дракона».

Задачу решили: 11
всего попыток: 20
Задача опубликована: 05.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Кривая дракона, петляя по плоскости, иногда образовывает замкнутые клетки, равные единичным квадратам. На рисунке, кривая дракона после шести итераций ограничивает 11 таких клеток.

Кривая дракона в прямоугольнике

Сколько таких клеток ограничивает кривая дракона после 13 итераций?

(подробней о кривой дракона см. задачу 2485).

Задачу решили: 13
всего попыток: 14
Задача опубликована: 17.05.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим вариант построения этой ломаной, когда добавляемая предыдущая часть поворачивается на 90° по и против часовой стрелки попеременно. На рисунке приведена такая кривая после четырёх итераций.

Кривая дракона в прямоугольнике - 2

Эта ломаная помещается в наименьший прямоугольник размером 3х4 и площадью 12. Какова площадь наименьшего прямоугольника, в котором помещается такая кривая после 11 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона.

Задачу решили: 13
всего попыток: 52
Задача опубликована: 19.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Гирляндой назовем пять единичных квадратов, шарнирно соединенных диагональными вершинами в незамкнутую цепочку, например, пять квадратов нанизанные на нить (на рисунке, слева).

Шарнирные пентамино

Такие гирлянды легко сворачиваются в фигурки обычного пентамино, например, на рисунке справа показаны I-пентамино и L-пентамино, но можно получить и новые фигурки, как на рисунке самая правая фигурка. Все эти три фигурки отличаются друг от друга положением только одного зеленого квадрата, который поворачивается на угол кратный 90° относительно шарнира. Квадраты могут вращаться вокруг любого своего шарнира. Сколько различных фигурок на клетчатой плоскости можно поочередно сложить из одной гирлянды? Симметричные фигурки и фигурки, полученные поворотом новыми не считаются.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.