Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
57
В египетском треугольнике 3, 4, 5 из прямого угла высота делит его на два треугольника. Найти отношение периметра основного треугольника к сумме радиусов окружностей, вписанных во все три треугольника.
Задачу решили:
22
всего попыток:
42
В треугольнике с целочисленными сторонами две биссектрисы делятся точкой пересечения в отношениях m:1 и n:1 (m,n - целые). Найдите наибольшее значение K=(m+n). В ответ введите наименьший периметр треугольника для найденного K.
Задачу решили:
33
всего попыток:
45
Диагонали выпуклого четырехугольника ABCD пересекаются в точке Е, АВ=AD,CA-биссектриса угла С, угол ВАD=140 градусов, угол ВЕА=110 градусов. Найти угол CDB в градусах.
Задачу решили:
21
всего попыток:
42
Остроугольный равнобедренный треугольник АВС (АС - основание) с целочисленными сторонами наименьшего периметра такой, что проекции боковой стороны ВС на прямые, проходящие через С, под внешними к треугольнику углами к стороне АС, равными соответственно углу АВС и полтора угла АВС, являются целочисленными. Найти периметр данного треугольника.
Задачу решили:
26
всего попыток:
45
В квадрате АBCD на диагонали АС отмечены точки Е, F так, что |AE|:|EF|:|FC|=5:11:4. Через эти точки и вершины квадрата проведены прямые, которые делят квадрат на 10 треугольников с наименьшими целочисленными площадями. Найти площадь этого квадрата.
Задачу решили:
31
всего попыток:
42
В прямоугольном треугольнике АВС (АВ - гипотенуза) с катетами |АС|=2|ВС| проведены биссектриса CD и чевиана АЕ, которая делит ВС в отношении |ВЕ|:|ЕС|=1:2 (О - точка пересечения их). Обозначим угол BDC=α, угол ЕОС=β, угол ВАЕ=γ. Найти (tgα + tgβ)/tgγ.
Задачу решили:
35
всего попыток:
43
В равнобедренном треугольнике АВС (АС - основание), боковая сторона которого равна 8, а основание равно радиусу описанной окружности, проведена высота BD и перпендикуляры DE, DF к боковым сторонам. Найти площадь пятиугольника AEOFC (O - центр описанной окружности).
Задачу решили:
30
всего попыток:
52
В остроугольном треугольнике АВС с целочисленными сторонами наименьшего периметра угол ВАС в два раза больше угла АВС. Найти длину стороны ВС.
Задачу решили:
30
всего попыток:
33
На диагонали АС квадрата АВСD построили прямоугольник APQC (AP=AB) так,что вершина В оказалась внутри прямоугольника. Прямая PB пересекает сторону DQ треугольникa DPQ в точке К и делит его на два треугольника DPK и PQK, у которых площади S1 и S2 соответственно. Найти (|S1|2-|S2|2)/(|S1|*|S2|).
Задачу решили:
27
всего попыток:
56
Около трапеции ABCD c основаниями |АВ|=3*|CD| описана окружность диаметром АВ. В точках А и С проведены касательные, которые пересекаются в точке К. Найти значение |KD|2, если известно, что оно равно численно 2*|АВ|.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|