img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 62
всего попыток: 267
Задача опубликована: 19.11.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Команда IF A=B HANG 1 на языке программирования MUMPS означает: "если A=B, то выполнить задержку программы на 1 секунду". В языке MUMPS почти нет понятия ТИПА ДАННЫХ (текстовые, целые числа, плавающая точка, короткие, длинные, логические и т.п.). Можно смело смешивать все данные, и всё будет выполняться по какой-то "естественной" логике каждой конкретной операции. Например, выражение 123 можно одновременно рассматривать и как число, и как строку. Кроме того, почти каждую команду можно писать не полностью, а только её начальные буквы. Например, вместо команды HANG можно писать HAN, или HA или только одну букву H. Длина написанной выше команды — 13 символов. Напишите эту же команду прописными латинскими буквами в кратчайшем виде.

Задачу решили: 166
всего попыток: 184
Задача опубликована: 09.05.14 08:00
Прислал: TALMON img
Источник: Случай из жизни
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

Когда наша туристическая группа собралась в аэропорту перед отправкой в гостиницу, на наших чемоданах наклеили бирки с номерами комнат. Приехав в гостиницу, каждый поднимался к своему номеру, где его ждал его чемодан.

Когда мы с женой уже устроились, к нам постучали. Женщине в комнату № 809 не принесли чемодан, и она вместе с руководителем группы стали спрашивать по всем комнатам, не к ним ли принесли чемодан по ошибке.

Утром я встретил женщину и спросил: Нашли чемодан? Она радостно ответила: Конечно!

Где был чемодан?

Задачу решили: 45
всего попыток: 59
Задача опубликована: 21.03.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Buuul (Майк Бул)

Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?

Задачу решили: 5
всего попыток: 14
Задача опубликована: 02.09.20 08:00
Прислал: TALMON img
Вес: 3
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Если на лист "тетрадки в клеточку" положить квадрат со стороной 6, то он захватит какую-то фигуру из нескольких целых клеток (например, как показано на рисунке).

Квадрат на тетрадке в клеточку

Сколько может быть таких неконгруэнтных фигур?

Считаются только максимальные фигуры: если к фигуре можно добавить хотя бы одну целую клетку (быть может), используя поворот и/или сдвиг квадрата по листу, то такая фигура не максимальная. Фигура на рисунке, очевидно, не максимальная. Такие не считаем.

В «подробном» решении следует показать все фигуры, либо как-то ясно их описать (например, используя шахматную терминологию).

Задачу решили: 4
всего попыток: 5
Задача опубликована: 08.02.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: bbny

На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку:

Квадрат на тетрадке в клеточку – 2

На том же рисунке также изображён квадрат размером 8x8, в котором данное полиомино помещается целиком.

В этом примере полиомино занимает на листе тетрадки 9 строк и 9 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами -3/5 и 5/3. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата.

Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
1. Для полиомино существует квадрат 8x8, в котором оно помещается целиком.
2. Полиомино является «максимальным»: Если к нему добавить хотя бы одну клетку, то уже не существует квадрат 8x8, в котором оно будет помещаться целиком.

Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим:
n1 – Количество полиомино, занимающих 8 строк и 8 столбцов;
n2 – Количество полиомино, занимающих 8 строк и 9 столбцов (или наоборот);
n3 – Количество полиомино, занимающих 9 строк и 9 столбцов;
n4 – Количество полиомино, занимающих 9 строк и 10 столбцов (или наоборот);
n5 - Количество полиомино, занимающих 10 строк и 10 столбцов.

В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5

Задачу решили: 28
всего попыток: 40
Задача опубликована: 12.04.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим систему двух неравенств с целочисленными коэффициентами:

Ax² + Bx + C ≤ 0
Dx² + Ex + F ≤ 0

Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?

Задачу решили: 10
всего попыток: 14
Задача опубликована: 20.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Рассмотрим следующие 6 свободных полиомино:

Общие части полиомино

Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких.

Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом:
В x-м символе y-й строки нужно записать ЕДИНИЦУ, если существует подполиомино y-го полиомино, которое также является подполиомино x-го полиомино, но не является подполиомино ни одного из остальных полиомино.
В противном случае нужно записать в этой позиции НОЛЬ.

Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.

Задачу решили: 17
всего попыток: 62
Задача опубликована: 06.10.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5:

Ферзи

Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.

Задачу решили: 29
всего попыток: 33
Задача опубликована: 12.11.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Обозначим:
S1 = (1 ∧ 1000) + (2 ∧ 999) + (3 ∧ 998) + . . . + (1000 ∧ 1),
где a ∧ b означает логическое умножение a и b. Оба операнда представляются в двоичной системе счисления и рассматриваются справа налево. Каждый двоичный разряд результата операции равен единице, если соответствующие разряды обоих операндов равны единице, и нулю в противном случае.

Например:
11 ∧ 6 = 10112 ∧ 1102 = 102 = 2.

Также обозначим:
S2 = (1 ∨ 1000) + (2 ∨ 999) + (3 ∨ 998) + . . . + (1000 ∨ 1),
где a ∨ b означает логическое сложение a и b. Оба операнда представляются в двоичной системе счисления и рассматриваются справа налево. Каждый двоичный разряд результата операции равен единице, если соответствующий разряд хотя бы одного из операндов равен единице, и нулю в противном случае.

Например:
9 ∨ 3 = 10012 ∨ 112 = 10112 = 11.

Найдите сумму S1 + S2.

Задачу решили: 8
всего попыток: 19
Задача опубликована: 11.02.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n.

Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.