Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
166
всего попыток:
184
Когда наша туристическая группа собралась в аэропорту перед отправкой в гостиницу, на наших чемоданах наклеили бирки с номерами комнат. Приехав в гостиницу, каждый поднимался к своему номеру, где его ждал его чемодан. Когда мы с женой уже устроились, к нам постучали. Женщине в комнату № 809 не принесли чемодан, и она вместе с руководителем группы стали спрашивать по всем комнатам, не к ним ли принесли чемодан по ошибке. Утром я встретил женщину и спросил: Нашли чемодан? Она радостно ответила: Конечно! Где был чемодан?
Задачу решили:
45
всего попыток:
59
Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?
Задачу решили:
28
всего попыток:
40
Рассмотрим систему двух неравенств с целочисленными коэффициентами: Ax² + Bx + C ≤ 0 Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?
Задачу решили:
10
всего попыток:
14
Рассмотрим следующие 6 свободных полиомино: Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких. Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом: Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
29
всего попыток:
33
Обозначим: Например: Также обозначим: Например: Найдите сумму S1 + S2.
Задачу решили:
8
всего попыток:
19
Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n. Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.
Задачу решили:
11
всего попыток:
33
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких ломаных?
Задачу решили:
16
всего попыток:
89
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких попарно неконгруэнтных ломаных?
Задачу решили:
19
всего попыток:
30
Для каждого натурального N>1 определены: Найдите максимальное N, меньшее 12345, для которого g(N) нецело.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|