img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 86
Задача опубликована: 04.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Имеется 1000 неокрашенных кубиков одного размера. Каждую грань этих кубиков можно покрасить одним цветом по своему усмотрению. Играя с этими кубиками можно сложить куб 10х10х10, поверхность которого полностью красная. Переложив кубики, можно сложить куб 10х10х10, поверхность которого полностью синяя, и т.д.

Какое наибольшее число одноцветных кубов 10х10х10 различных по цвету можно сложить из этого набора.

Задачу решили: 43
всего попыток: 67
Задача опубликована: 27.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Натуральное n-значное число равно n-ой степени суммы его цифр. Найтите все такие числа, в  ответе укажите их сумму.

Задачу решили: 37
всего попыток: 60
Задача опубликована: 01.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке.

Домино

При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?

+ 11
  
Задачу решили: 51
всего попыток: 68
Задача опубликована: 20.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Книга сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Все страницы книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради равна 338. Сколько страниц в этой книге?

Задачу решили: 25
всего попыток: 138
Задача опубликована: 08.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке.

Квадраты и парабола

Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?

Задачу решили: 66
всего попыток: 106
Задача опубликована: 29.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Гимнасты одного веса построили пирамиду, изображенную на рисунке.

Пирамида гимнастов

Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.

Задачу решили: 67
всего попыток: 77
Задача опубликована: 20.05.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Hasmik33

Решите уравнение 1+2+3+...+n=1*2*3*...*m, где n и m неравные натуральные числа. В ответе укажите произведение nm.

Задачу решили: 26
всего попыток: 96
Задача опубликована: 29.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Десять пронумерованных фишек расположены в форме треугольника.

Треугольная карусель

За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек  фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?

Задачу решили: 38
всего попыток: 46
Задача опубликована: 14.08.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В натуральном ряду чисел найдите отрезок [m;n], сумма всех чисел которого равна s, причем числа m, n и s - различные квадраты. В ответе укажите наименьшую возможную сумму s.

Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.