Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
79
Из спичек сложили правильный шестиугольник, изображенный на рисунке. В нем спрятаны контуры нескольких правильных шестиугольников. Какое наименьшее количество спичек нужно убрать, чтобы контуры всех правильных шестиугольников оказались разрушенными?
Задачу решили:
45
всего попыток:
95
Разрежьте фигуру "Елочка", изображенную на рисунке на наименьшее число частей и сложите из них квадрат. В ответе укажите число этих частей.
Задачу решили:
37
всего попыток:
72
Прямая пересекает треугольник со сторонами 5, 7 и 9 так, что она делит пополам и его периметр, и площадь. В каком отношении она делит большую сторону треугольника? В ответе укажите отношение меньшей части к большей.
Задачу решили:
37
всего попыток:
60
В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке. При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?
Задачу решили:
25
всего попыток:
138
На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке. Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?
Задачу решили:
66
всего попыток:
106
Гимнасты одного веса построили пирамиду, изображенную на рисунке. Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.
Задачу решили:
26
всего попыток:
96
Десять пронумерованных фишек расположены в форме треугольника. За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?
Задачу решили:
5
всего попыток:
28
Фигуру, изображенную на правильной треугольной решетке, разрежьте на несколько частей и сложите из них правильный шестиугольник. В ответе укажите наименьшее число частей.
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
31
всего попыток:
43
Вершины квадрата отрезками соединены с серединами его сторон. При этом квадрат разбивается на несколько частей, из которых некоторые закрашены. Какая часть квадрата закрашена?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|