img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 1469
всего попыток: 2235
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: sibdoma (Павел Сивак)

Сколько нужно провести матчей по олимпийской системе (проигравший вылетает), чтобы из 30 футбольных команд определить победителя?

+ 18
+ЗАДАЧА 32. Три спутника (Д.Б.Фукс, переработка demiurgos)
  
Задачу решили: 108
всего попыток: 505
Задача опубликована: 02.04.09 15:13
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: lg

В рамках новой программы исследования околоземного пространства её руководители хотят запусить три спутника, которые будут летать на одной и той же высоте, делая один оборот вокруг Земли за 15 часов. Спутники нужно вывести на их орбиты так, чтобы в течение нескольких часов пути спутников не пересекались, т.е. чтобы никакие два спутника не побывали за это время в одной и той же точке околоземного пространства. Какого наибольшего целого числа часов можно добиться, правильно выбрав орбиты спутников?

С математической точки зрения речь идёт о непересекающихся дугах больших окружностей сферы (большая окружность — это пересечение сферы с плоскостью, проходящей через её центр).

Например, если спутников только два, а не три, то ответ на вопрос задачи — 14. Для этого их надо запустить так, чтобы один пролетал над Северным полюсом в тот момент, когда другой пролетает над Южным. И через полчаса после их одновременного прохода полюсов у нас заведомо будет 14 часов.

Задачу решили: 116
всего попыток: 395
Задача опубликована: 02.04.09 15:13
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?

Задачу решили: 1313
всего попыток: 3356
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Источник: Олимпиада Ростовской области
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Oregu (Oleg Prophet)

В пруду плавают 30 голодных щук. Есть больше нечего, и им приходится пожирать друг друга. Щука считается сытой, если она съела не менее трёх щук (сытых или голодных — неважно). Какое наибольшее число щук смогут насытиться?

Задачу решили: 846
всего попыток: 1697
Задача опубликована: 28.03.09 16:51
Прислал: demiurgos img
Источник: Московская олимпиада школьников по математике...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Xardas (Алексей Кузнецов)

Васин счёт в банке составляет 2009 рублей. Банкоматы этого банка могут совершать операции только двух видов: снимать 700 рублей или класть 910 рублей. Какую максимальную сумму Вася может снять со счета, если других денег у него нет?

Задачу решили: 319
всего попыток: 728
Задача опубликована: 06.04.09 23:48
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На 50 деревянных правильных пятиугольников, прибитых к полу, натягивается резиновое кольцо, которое принимает форму некоторого многоугольника. Каково минимальное число его вершин?

(Условие задачи изменено, поскольку прежняя формулировка вызывала много вопросов. )
+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.