Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
58
На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке. Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100? Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.
Задачу решили:
30
всего попыток:
121
В квадратную рамку из дерева вбито по три гвоздя параллельно друг другу с каждой стороны. Меняя глубину погружения гвоздей, добейтесь такого расположения, чтобы каждый гвоздь пересекал ровно n гвоздей (разумеется в проекции). Выясните, при каких значениях n выполняется условие задачи. В ответе укажите сумму всех таких значений n. На приведенном рисунке показано решение при n=1.
Задачу решили:
37
всего попыток:
58
Первые десять натуральных чисел разбейте на пары так, чтобы из пяти прямоугольников с длинами сторон, соответствующих парам, можно было сложить квадрат. В ответе укажите площадь наибольшего такого квадрата.
Задачу решили:
33
всего попыток:
37
Клетки таблицы 7x13 раскрашены в чёрный и белый цвета. Пар соседних клеток разного цвета всего 60, пар соседних клеток белого цвета всего 78. Сколько пар соседних клеток черного цвета?
Задачу решили:
19
всего попыток:
111
Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Найдите полный набор фигурок «тридомино». Из k фигурок этого набора можно сложить прямоугольник 6хk, например, на рисунке показан прямоугольник 6х10, сложенный из десяти фигурок. Сложите прямоугольник, употребив большее число фигурок найденного набора, причем, каждую фигурку можно использовать один раз. В ответе укажите наибольшее значение k. Уточним: 1) две фигурки различны, если их контуры нельзя совместить; 2) при построении прямоугольника фигурки можно как угодно поворачивать и переворачивать.
Задачу решили:
35
всего попыток:
41
В числовом равенстве
Задачу решили:
30
всего попыток:
75
Бумажный лист в форме квадрата 8х8, содержит 64 квадратные клетки, которые раскрашены в три цвета так, как на рисунке. Обратная сторона листа – зеленая. Сделав несколько сгибов, сложите этот лист в форме квадрата 4х4 так, чтобы лицевая сторона его состояла из 16 белых клеток, а обратная – из 16 черных. В ответе укажите наименьшее число сгибов. Уточнения: Сгиб – это поворот на 180° одной части фигуры вокруг некоторого отрезка прямой этой фигуры. Резать или рвать бумажный квадрат – нельзя. Промежутки между клетками не учитываются.
Задачу решили:
17
всего попыток:
68
В мусульманском календаре их было 11, в григорианском календаре 13. Каким будет 14-ый год?
Задачу решили:
26
всего попыток:
36
Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|