img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 114
Задача опубликована: 19.12.10 08:00
Прислал: TALMON img
Источник: Euler Project
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Для натурального числа n обозначим C(n) количество натуральных чисел x меньших n, для которых x2+x+1 делится на n. Чему равно C(p), если p — простое? В ответе напишите без пробелов значения C(k·2k−1) при k=115, 123, 249, 362 и 384. Учтите, что числа k·2k−1 являются простыми при всех указанных значениях k.

Задачу решили: 51
всего попыток: 314
Задача опубликована: 20.11.13 08:00
Прислал: ludwig51 img
Вес: 1
сложность: 3 img
баллы: 100

M сообщает P и S , что имеются два натуральных числа,
больших единицы, а их сумма меньше 100.
M: "Произведение этих чисел равно...(сообщает на ухо P),
а сумма этих чисел... (сообщает на ухо S). Чему равны числа?" 
После этого произошёл диалог:
(P): Не могу сказать, что это за числа.        
(S): А я знал, что Вы этого не сможете.       
(P): Тогда я знаю эти числа.                       
(S): Тогда и я их знаю.

Чему равна максимальная сумма чисел?

Задачу решили: 37
всего попыток: 58
Задача опубликована: 21.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.

Задачу решили: 35
всего попыток: 87
Задача опубликована: 08.06.15 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Пусть целые положительные числа a ≥ b такие, что (a+1)/b + (b+1)/a - тоже целое. Найдите сумму всех таких a меньших 1000.

Задачу решили: 19
всего попыток: 41
Задача опубликована: 29.07.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Рассмотрим число n=1096375199328173. Рассмотрим все натуральные числа от 1 до n-1 включительно. Рассмотрим остатки от деления квадратов этих чисел на n. Сколько всего получится различных остатков?

Задачу решили: 28
всего попыток: 57
Задача опубликована: 03.08.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Рассмотрим число n=106. Найдите сумму:
S = Σ(-1)m+1•[n / (p1•p2•...•pm)], 
где (p1•p2•...•pm) – всевозможные произведения различных простых чисел, m=1, 2, 3, ..., [x] – целая часть x.

Задачу решили: 28
всего попыток: 53
Задача опубликована: 20.01.20 08:00
Прислал: TALMON img
Источник: Journal of Recreational Mathematics
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Назовём натуральное число интересным, если его запись в десятичной системе счисления состоит из чётного количества цифр и его «левая половина» равна его «правой половине». Например, 2020 - это интересное число. Найдите наименьшее интересное число, являющееся квадратом целого числа.

Задачу решили: 19
всего попыток: 44
Задача опубликована: 31.07.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Расмотрим простое число p=1000000007=109+7 и все целые числа n, которые не делятся на p. Какие значения, не превосходящие 14, может принимать остаток от деления n2 на p?

Введите ответ в виде строки из 14-и НУЛЕЙ и ЕДИНИЦ, где на k-м месте (слева) стоит ЕДИНИЦА, если остаток от деления n2 на p может принимать значение k, а в противном случае - НОЛЬ.

Задачу решили: 9
всего попыток: 16
Задача опубликована: 28.07.23 08:00
Прислал: TALMON img
Источник: По мотивам предыдущих задач о стаканах. Соавт...
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Первые сто простых чисел написаны мелом на ста досках (по одному числу на каждой доске).

Разрешена такая операция: если на каких-то двух досках написаны числа a и b, ab, то можно их заменить на числа 2a и b-a.

Какое максимальное количество чисел на досках можно обнулить посредством таких операций?

Задачу решили: 20
всего попыток: 25
Задача опубликована: 10.04.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Натуральное число  делится без остатка на 4, на 9, на 49, и имеет 45 делителей, среди которых 1 и само это число. Найдите все такие натуральные числа. В ответе укажите их сумму.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.