Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
63
всего попыток:
178
Найдите число всех пар (m,n) целых чисел таких, что 1 ≤ m ≤ 20092009, 1 ≤ n ≤ 20092009 и |m2 + mn − n2| = 1.
Задачу решили:
111
всего попыток:
499
На блюде лежат 30 конфет различных сортов. Можно выбрать несколько сортов и съесть одно и то же количество конфет каждого выбранного сорта. Какое максимальное число конфет Вам гарантированно удастся съесть? (Независимо от того, сколько конфет и каких сортов лежит на блюде.)
Задачу решили:
82
всего попыток:
234
Квадрат на плоскости разбит на 25 маленьких одинаковых квадратов, через все вершины которых проходит некоторая ломаная (возможно самопересекающаяся). Каково минимальное число её звеньев?
Задачу решили:
105
всего попыток:
513
Грибник заблудился в лесу. Однако он уверен, что не дальше, чем в 3 км от него, находится прямое шоссе. Какое минимальное число км придётся преодолеть грибнику, чтобы наверняка (т.е. при полном отсутствии везения) выбраться на шоссе? Ответ округлите до ближайшего целого числа.
Задачу решили:
196
всего попыток:
292
На доске выписаны два числа 22009 и 52009 (в десятичной записи). Сколько всего цифр на доске?
Задачу решили:
73
всего попыток:
215
Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.
Задачу решили:
99
всего попыток:
202
На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?
Задачу решили:
57
всего попыток:
246
У Вас есть три одинаковых пластмассовых шарика, и Вы хотите выяснить, после броска с какого этажа 119-этажного небоскрёба на них начинают появляться трещины. (Например, если сбросить с 20-го, то трещины появляются, а на 19-м ещё нет.) Чтобы определить, появились ли трещины, нужно выйти на улицу и осмотреть шарик. Прежде чем выйти на улицу, Вы можете сбросить с разных этажей все имеющиеся в наличии нетреснувшие шарики. Разрешается выйти на улицу не более, чем n раз. При каком минимальном значении n ещё возможно гарантированно определить, после броска с какого именно этажа шарики начинают покрываются трещинами. Учтите, что шарик может покрыться трещинами и при падении с первого этажа, а может остаться целым и при падении с последнего.
(См. похожую задачу "Небоскрёб и стеклянные шарики")
Задачу решили:
81
всего попыток:
119
Автобусный билет называется счастливым, если сумма трёх первых цифр его шестизначного номера равна сумме трёх последних цифр. Доказать, что сумма номеров всех счастливых билетов делится на 13.
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|