Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
83
всего попыток:
465
Перед Вами 25 окопов в ряд. В каком-то из них сидит снайпер. У Вас в руках гранатомёт, позволяющий вдребезги разнести всё содержимое любого из окопов (сам окоп при этом остаётся цел). Сразу после того, как Вы делаете выстрел, снайпер по не известной Вам логике перебегает в соседний окоп (если Вы промазали). Остаться в том же окопе, равно как и перебежать дальше, чем в соседний окоп, он не может. Следующий выстрел. Перебежка. Выстрел. Перебежка. И так далее. Проблема в том, что ни снайпера, ни его перебежек Вы не видите. Какое минимальное число выстрелов Вам понадобится, чтобы гарантированно ликвидировать снайпера?
(Задача носит исследовательский характер, поскольку доказательства минимальности ответа, заложенного в систему, нам не известно. Надеемся, что участники предложат такое доказательство!)
Задачу решили:
105
всего попыток:
513
Грибник заблудился в лесу. Однако он уверен, что не дальше, чем в 3 км от него, находится прямое шоссе. Какое минимальное число км придётся преодолеть грибнику, чтобы наверняка (т.е. при полном отсутствии везения) выбраться на шоссе? Ответ округлите до ближайшего целого числа.
Задачу решили:
99
всего попыток:
202
На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Задачу решили:
44
всего попыток:
237
Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.
Задачу решили:
146
всего попыток:
188
На гипотенузе прямоугольного треугольника с длинами катетов 21 и 28 построен квадрат. Отрезок, соединяющий точку пересечения диагоналей квадрата с вершиной прямого угла треугольника, делит его гипотенузу на отрезки. Найдите произведение длин этих отрезков.
Задачу решили:
83
всего попыток:
223
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.
Задачу решили:
12
всего попыток:
118
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.
Задачу решили:
135
всего попыток:
189
Найти площадь треугольника, высоты которого равны: 12, 63/5, 252/13.
Задачу решили:
121
всего попыток:
263
Какое минимальное число машин, грузоподъёмностью 1,5 тонны каждая, нужно заказать для перевозки нескольких ящиков общим весом 13,5 тонн, если известно, что вес каждого из них не превосходит 350 кг? (Все машины делают только по одному рейсу. Заказанных машин должно хватить независимо от общего количества ящиков, которое заранее неизвестно.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|