img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 66
всего попыток: 88
Задача опубликована: 08.06.12 08:00
Прислал: TALMON img
Источник: Литовская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Площадь четырёхугольника равна 67. Найдите минимально возможное значение суммы произведений длин его противоположных сторон (т.е. выражения ac+bd, если одна пара противоположных сторон имеет длины a и c, а другая пара - b и d).

Задачу решили: 36
всего попыток: 156
Задача опубликована: 13.06.12 08:00
Прислал: levvol img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

На ипподроме  происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые  лошади могут придти к финишу одновременно (голова  в  голову)?  (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).

Задачу решили: 11
всего попыток: 78
Задача опубликована: 25.06.12 08:00
Прислал: katalama img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Возьмём полоску бумаги и начнём её разрезать и сгибать пополам. Обозначим

  • 0 - сгиб, при котором правая часть загибается вниз;
  • 1 - сгиб, при котором левая часть загибается вниз;
  • 2 - разрез, при котором правая часть подкладывается под левую;
  • 3 - разрез, при котором левая часть подкладывается под правую.

kata.png

Последовательность сгибов/разрезов назовём "фальцовкой".
В результате фальцовки мы получим "тетрадь".
Если теперь перенумеровать все страницы сверху вниз начиная с нуля, а затем развернуть тетрадь обратно в полоску, то увидим, что вся полоса (сверху и снизу) исписана числами. Последовательность чисел (сначала тех что сверху, затем тех, что снизу) назовем "раскладкой". Например, фальцовке '00' соответствует раскладка '0,7,4,3,2,5,6,1'. Здесь число 0 - находится на нулевом, а 7 на первом месте.

Определите на каком месте находится число 2012 в раскладке для следующей фальцовки: '2010201120122013'

Задачу решили: 27
всего попыток: 100
Задача опубликована: 10.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество инъективных функций f \colon \{1,2,\ldots, 7\} \to \{1,2,\ldots,9\}, обладающих следующим свойством:

f(i) \ne f(j) + 1 для всех 1 \le i < j \le 7.

Задачу решили: 40
всего попыток: 79
Задача опубликована: 31.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите количество подмножеств множества натуральных чисел {1,2,...,37} с суммой элементов, делящейся на 74.

Задачу решили: 68
всего попыток: 69
Задача опубликована: 12.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC 

Задачу решили: 80
всего попыток: 104
Задача опубликована: 14.11.12 08:00
Прислал: pvpsaba img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Площадь трапеции равна 50, а сумма ее диагоналей - 20. Найти квадрат высоты трапеции.

Задачу решили: 72
всего попыток: 165
Задача опубликована: 23.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

BC — основание равнобедренного треугольника ABC, BD — биссектриса угла B. Выполнено равенство BC = AD+BD. Найдите угол A (в градусах).

Задачу решили: 36
всего попыток: 94
Задача опубликована: 25.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Рассмотрим множество квадратов для первых 40 натуральных чисел:

S={12,22,32,42,..., 392,402}.

Для каждого из чисел 1<n<41, рассмотрим все подмножества S, которые состоят ровно из n элементов. Если при фиксированном n, в каждом из подмножеств длины n найдутся хотя бы два элемента x и y такие, что x+y =p простое число, будем называть число n - квадратнопростым. Найдите минимальное квадратнопростое число n для данного множества S.

(Например для множества S={1, 4, 9}, n=2: {1, 4}, {1, 9}, {4, 9}; n=3: {1, 4, 9}, и минимальное квадратнопростое число n=3).

Задачу решили: 32
всего попыток: 250
Задача опубликована: 20.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.