Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
71
всего попыток:
99
В одном шотландском городке стояла школа, в которой учились ровно 12345678910 школьников. У каждого из них был шкаф для одежды — всего 12345678910 шкафов, причём шкафы были пронумерованы числами от 1 до 12345678910. А ещё в этой школе жили привидения — ровно 12345678910 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала 1-ое привидение открыло все шкафы; потом 2-ое привидение закрыло те шкафы, номер которых делился на 2; затем 3-третье привидение поменяло позиции (т. е. открыло шкаф, если он был закрыт, и закрыло — если он был открыт) тех шкафов, номер которых делился на 3; следом за ним 4-ое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т. д. Как только 12345678910-ое привидение поменяло позицию 12345678910-го шкафа — пропел петух и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?
Задачу решили:
67
всего попыток:
209
Среди натуральных чисел n меньших 210 найдите количество таких, что n32 - 1 кратно 210.
Задачу решили:
73
всего попыток:
90
Для натуральных чисел a, m, n (101 ≤ a ≤ 199) выполнены следующие два условия:
Задачу решили:
92
всего попыток:
103
Найти сумму всех натуральных чисел, имеющих ровно 6 делителей, сумма которых равна 3500.
Задачу решили:
80
всего попыток:
98
Если натуральное число разделить на 2, то у него станет на 30 делителей меньше, если поделить на 3, то делителей станет на 35 меньше, а если поделить на 5, то делителей станет меньшена 42 делителя меньше, чем у самого числа. Число имеет вид 2x · 3y · 5z. Чему оно равно?
Задачу решили:
18
всего попыток:
122
Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).
Задачу решили:
17
всего попыток:
444
Найти наибольшее целое число N для которого существует N троек неотрицательных целых чисел (ai, bi, ci) (i=1...N) таких, что: для всех 1 ≤ i≠j ≤ N, ai≠aj, bi≠bj, ci≠cj; для всех 1 ≤ i ≤ N, ai+bi+ci=2014.
Задачу решили:
46
всего попыток:
84
Известно, что a15+a25 +...an5= 2004, ai - целые числа. Найдите минимальное положительное значение a1+a2 +...an?
Задачу решили:
40
всего попыток:
62
Пусть N равно произведению всех возможных значений (n2+nm+m2) для всех пар натуральных чисел n и m таких, что 1 ≤ n < m ≤ 100. Чему равен остаток от деления N на 101?
Задачу решили:
54
всего попыток:
92
Найдите наименьшее натуральное число, которое не может быть выражено в виде (2a-2b)/(2c-2d), где a, b, c, d - также натуральные числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|