img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 51
Задача опубликована: 05.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколькими способами можно разменять 1 рубль, имея монеты 1, 2, 10, 20 и 50 копеек?

Задачу решили: 34
всего попыток: 55
Задача опубликована: 07.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Сколько раз за последние 400 лет по григорианскому календарю 1 января выпадало на воскресенье?

Задачу решили: 32
всего попыток: 45
Задача опубликована: 15.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Имеется 90 карточек с номерами от 1 до 90. Из них вытаскивают 5. Какова вероятность того, что на них будут хотя бы два последовательных номера?

Задачу решили: 27
всего попыток: 38
Задача опубликована: 23.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

В алфавите из n букв можно составлять слова в которых стоящие рядом буквы различны и из которых вычеркиванием букв нельзя получить слова вида abab, гда a и b различные. Найдите максимально возможную длину слова. В ответе укажите длину слова для n = 33.

Задачу решили: 26
всего попыток: 61
Задача опубликована: 11.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На какое максимальное число непересекающихся областей могут рассечь круг отрезки, соединяющие n точек, лежащих на его окружности? Ответ укахите для n = 12.

Задачу решили: 29
всего попыток: 70
Задача опубликована: 26.02.21 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Однажды на DIOFANT.RU было опубликовано 5 задач. Среди пользователей сайта не оказалось двух, кто решил одни и те же задачи. Если исключить любую задачу, то выбрав любого пользователя, можно найти и другого, решившего из оставшихся четырёх задач те же, что и он. Сколько пользователей решало задачи?

Задачу решили: 18
всего попыток: 35
Задача опубликована: 18.02.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?

Задачу решили: 30
всего попыток: 36
Задача опубликована: 09.03.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Прямоугольный параллелепипед 3x4x5 составлен из белых и черных единичных кубиков. Оказалось, что пар соседних кубиков (т. е. имеющих общую грань) разного цвета всего 48, пар соседних кубиков белого цвета всего 51. Сколько пар соседних кубиков черного цвета?

Задачу решили: 22
всего попыток: 23
Задача опубликована: 11.12.23 08:00
Прислал: admin img
Источник: Олимпиада Эстонии, 2016
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

20 студентов сдавали экзамен по очереди. Сначала они написали на бумажках номера от 1 до 20 и случайным образом вытаскивали по одной бумажке, тот кто вытащил бумажку с номером 1, пошел сдавать первым. Затем бумажка с номером 20 была уничтожена и оставшиеся студенты снова вытаскивали бумажки и снова, вытащивший номер 1 шел следующим. Процедура повторялась каждый раз, пока все студенты не сдали экзамен. Как оказалось, у каждого студента все вытянутые им номера были различными. Староста группы в первый раз вытащил число 14. Каким по счету он пошел отвечать?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.