img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 31
всего попыток: 51
Задача опубликована: 28.09.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Расмотрим такую последовательность:
F0 = 0,
F1 = 1,
F2 = 3,
F3 = 10,
...
Fn+2 = 3Fn+1 + Fn

Сколько цифр в F1000000 ?

Задачу решили: 28
всего попыток: 40
Задача опубликована: 12.04.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим систему двух неравенств с целочисленными коэффициентами:

Ax² + Bx + C ≤ 0
Dx² + Ex + F ≤ 0

Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?

Задачу решили: 20
всего попыток: 29
Задача опубликована: 04.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов.

Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами.

Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его:
Sk,m – в формуле синуса суммы k+m углов;
Ck,m – в формуле косинуса суммы k+m углов.

Например:
С0,2 = 1, C1,1 = 0, C2,0 = -1.

Найдите сумму квадратов S579,420 и C579,421

Задачу решили: 24
всего попыток: 75
Задача опубликована: 03.11.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Рассмотрим уравнение в целых числах:
x/(y+z) + y/(x+z) + z/(x+y) = x+y+z.
Найдите первые три наименьшие различные неотрицательные значения суммы s=x+y+z. Введите в ответе сумму этих трёх значений s.

Задачу решили: 29
всего попыток: 33
Задача опубликована: 12.11.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Обозначим:
S1 = (1 ∧ 1000) + (2 ∧ 999) + (3 ∧ 998) + . . . + (1000 ∧ 1),
где a ∧ b означает логическое умножение a и b. Оба операнда представляются в двоичной системе счисления и рассматриваются справа налево. Каждый двоичный разряд результата операции равен единице, если соответствующие разряды обоих операндов равны единице, и нулю в противном случае.

Например:
11 ∧ 6 = 10112 ∧ 1102 = 102 = 2.

Также обозначим:
S2 = (1 ∨ 1000) + (2 ∨ 999) + (3 ∨ 998) + . . . + (1000 ∨ 1),
где a ∨ b означает логическое сложение a и b. Оба операнда представляются в двоичной системе счисления и рассматриваются справа налево. Каждый двоичный разряд результата операции равен единице, если соответствующий разряд хотя бы одного из операндов равен единице, и нулю в противном случае.

Например:
9 ∨ 3 = 10012 ∨ 112 = 10112 = 11.

Найдите сумму S1 + S2.

Задачу решили: 14
всего попыток: 16
Задача опубликована: 29.11.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»:
xy = [(x+y) / 214] + (x+y) mod 214
(целая часть от деления x+y на 214 + остаток от деления x+y на 214).

Например:
123  456 = [(123+456) / 214] + (123+456) mod 214  = 0 + 579 = 579

16380  7 = [(16380+7) / 214+ (16380+7) mod 214  = 1 + 3 = 4

Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.

Задачу решили: 22
всего попыток: 29
Задача опубликована: 20.07.22 08:00
Прислал: TALMON img
Источник: Идея обобщить задачу для любого количества сл...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите максимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется:

0 < a < b < c < d < e < f < g

и

1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.

Задачу решили: 6
всего попыток: 13
Задача опубликована: 11.10.23 08:00
Прислал: TALMON img
Источник: Идея МММ
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Lec

Найдите количество частей, на которые разбивается пятимерное вещественное пространство гиперплоскостями

x1=0, x2=0, x3=0, x4=0, x5=0,
x1=1, x2=1, x3=1, x4=1, x5=1,
x1+x2+x3+x4+x5=1,
x1+x2+x3+x4+x5=2.

Задачу решили: 17
всего попыток: 24
Задача опубликована: 06.12.23 08:00
Прислал: TALMON img
Источник: Ибн Альберт
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Найдите количество таких функций f(x), определённых для всех вещественных чисел, что
f(sin(x)) + f(cos(x)) = sin(2x).

Если таких функций бесконечно много, введите -1 (минус один).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.