Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
51
Расмотрим такую последовательность: Сколько цифр в F1000000 ?
Задачу решили:
28
всего попыток:
40
Рассмотрим систему двух неравенств с целочисленными коэффициентами: Ax² + Bx + C ≤ 0 Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?
Задачу решили:
20
всего попыток:
29
Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов. Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами. Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его: Например: Найдите сумму квадратов S579,420 и C579,421.
Задачу решили:
24
всего попыток:
75
Рассмотрим уравнение в целых числах:
Задачу решили:
29
всего попыток:
33
Обозначим: Например: Также обозначим: Например: Найдите сумму S1 + S2.
Задачу решили:
14
всего попыток:
16
Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»: Например: 16380 ⊕ 7 = [(16380+7) / 214] + (16380+7) mod 214 = 1 + 3 = 4 Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.
Задачу решили:
22
всего попыток:
29
Найдите максимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется: 0 < a < b < c < d < e < f < g и 1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.
Задачу решили:
6
всего попыток:
13
Найдите количество частей, на которые разбивается пятимерное вещественное пространство гиперплоскостями x1=0, x2=0, x3=0, x4=0, x5=0,
Задачу решили:
17
всего попыток:
24
Найдите количество таких функций f(x), определённых для всех вещественных чисел, что Если таких функций бесконечно много, введите -1 (минус один).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|