Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
56
всего попыток:
66
Последовательность задана рекуррентным способом: a1=2, a2=2, an+2=an+1/an. Найдите сумму 1730 первых членов этой последовательности.
Задачу решили:
45
всего попыток:
50
Найдите наибольшее значение определителя матрицы четвертого порядка, у которой на главной диагонали записаны числа 1, 2, 3 и 4, а все остальные числа одинаковы. Определитель изображен на рисунке.
Задачу решили:
33
всего попыток:
37
Клетки таблицы 7x13 раскрашены в чёрный и белый цвета. Пар соседних клеток разного цвета всего 60, пар соседних клеток белого цвета всего 78. Сколько пар соседних клеток черного цвета?
Задачу решили:
19
всего попыток:
111
Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Найдите полный набор фигурок «тридомино». Из k фигурок этого набора можно сложить прямоугольник 6хk, например, на рисунке показан прямоугольник 6х10, сложенный из десяти фигурок. Сложите прямоугольник, употребив большее число фигурок найденного набора, причем, каждую фигурку можно использовать один раз. В ответе укажите наибольшее значение k. Уточним: 1) две фигурки различны, если их контуры нельзя совместить; 2) при построении прямоугольника фигурки можно как угодно поворачивать и переворачивать.
Задачу решили:
35
всего попыток:
41
В числовом равенстве
Задачу решили:
30
всего попыток:
75
Бумажный лист в форме квадрата 8х8, содержит 64 квадратные клетки, которые раскрашены в три цвета так, как на рисунке. Обратная сторона листа – зеленая. Сделав несколько сгибов, сложите этот лист в форме квадрата 4х4 так, чтобы лицевая сторона его состояла из 16 белых клеток, а обратная – из 16 черных. В ответе укажите наименьшее число сгибов. Уточнения: Сгиб – это поворот на 180° одной части фигуры вокруг некоторого отрезка прямой этой фигуры. Резать или рвать бумажный квадрат – нельзя. Промежутки между клетками не учитываются.
Задачу решили:
26
всего попыток:
45
Сколько точек с целочисленными координатами находится внутри области, ограниченной параболой у=2020-х2 и осью Ох?
Задачу решили:
36
всего попыток:
54
Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда. В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.
Задачу решили:
39
всего попыток:
49
На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье). Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами. В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами.
Задачу решили:
26
всего попыток:
36
Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|