img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 54
Задача опубликована: 15.01.10 16:29
Прислал: min img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?

+ 26
  
Задачу решили: 49
всего попыток: 143
Задача опубликована: 16.01.10 15:52
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.

+ 55
  
Задачу решили: 129
всего попыток: 185
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 38
всего попыток: 124
Задача опубликована: 22.01.10 00:15
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Треугольник, лежащий на координатной плоскости, обладает следующим свойством: при его параллельном переносе на любой ненулевой вектор, обе координаты которого кратны 30, сдвинутый треугольник не перекрывает исходный (т.е. их внутренности не пересекаются). Найти наибольшую площадь исходного треугольника.

Задачу решили: 137
всего попыток: 191
Задача опубликована: 28.01.10 01:06
Прислал: Father img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Представить сумму 1/(22−1)+1/(42−1)+1/(62−1)+1/(82−1)+...+1/(20102−1) в виде несократимой дроби. В ответе указать сумму числителя и знаменателя.

Задачу решили: 126
всего попыток: 337
Задача опубликована: 28.01.10 21:35
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

У Вас есть 5 камешков, массы любых двух из которых различны, и чашечные весы без гирь. За какое наименьшее число взвешиваний Вам удастся гарантированно расположить камешки по возрастанию массы?

Задачу решили: 63
всего попыток: 143
Задача опубликована: 29.01.10 22:37
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).

Задачу решили: 51
всего попыток: 72
Задача опубликована: 31.01.10 23:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?

Задачу решили: 50
всего попыток: 188
Задача опубликована: 04.02.10 17:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

У выпуклого многогранника 2010 рёбер. Какое наибольшее число из них могут пересекать плоскость, не проходящую через вершины многогранника?

Задачу решили: 26
всего попыток: 42
Задача опубликована: 07.02.10 00:11
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Anton_Lunyov

Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.