Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
21
всего попыток:
106
В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Задачу решили:
37
всего попыток:
58
Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.
Задачу решили:
41
всего попыток:
63
Пусть A - матрица 16x16 с элементами aij=НОД(i,j) для 1≤i,j≤16. Найдите ее определитель.
Задачу решили:
40
всего попыток:
54
Пусть Q(x)=x3+6. Определим последовательность полиномов Pn(x): P1(x)=Q(x), Pn+1(x)=Q(Pn(x)), n=1,2,... Найти сумму всех действительных решений уравнения P2014(x)=x.
Задачу решили:
37
всего попыток:
41
Пусть функция f(x) не равная тождественно нулю удовлетворяет условию:
Задачу решили:
52
всего попыток:
89
Известно, что . Найти .
Задачу решили:
62
всего попыток:
67
Найти сумму всех натуральных чисел n таких, что сумма цифр числа 5n равна 2n.
Задачу решили:
39
всего попыток:
68
На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.
Задачу решили:
53
всего попыток:
116
Дана функция f(x) = |4 − 4|x||− 2. Сколько решений имеет уравнение f(f(x)) = x?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|