Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
54
Четыре деревни расположены в вершинах квадрата стороной 2 км. Между ними построены дороги. В ответе укажите наименьшаую суммарную протяженность в метрах, округлив ее до ближайшего целого.
Задачу решили:
12
всего попыток:
16
Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей. На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?
Задачу решили:
15
всего попыток:
25
В выпуклом четырехугольнике два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. Какое наименьшее количество данных о длинах нужно для нахождения площади четырехугольника?
Задачу решили:
18
всего попыток:
32
В четыре стакана налито 2 мл, 5 мл, 15 мл, 11 мл воды. Разрешена такая операция: удвоение количества воды в стакане путём переливания из другого стакана (содержащего достаточное для этого количество воды). За какое минимальное количество операций можно опустошить два стакана? [Решения проверяются в ручном режиме. Укажите в решении, какие конкретные переливания предлагаете. Доказательство минимальности не обязательно.]
Задачу решили:
18
всего попыток:
30
Касательно по внешнему контуру синей окружности располагаются одинаковые красные окружности. Которые в свою очередь касаются по внутреннему контуру зеленой окружности. Каждая красная окружность также касается двух соседних красных окружностей. На рисунке изображен пример для 4 красных окружностей. Пусть N - это минимальное количество красных окружностей, при котором их суммарная площадь будет меньше площади синей окружности. Пусть M - это минимальное количество красных окружностей при котором их удвоенная суммарная площадь будет меньше площади зеленой окружности. Найдите N+M.
Задачу решили:
26
всего попыток:
38
В некотором заповеднике 10 львов и 15 тигров стали поедать друг друга (львы тигров, тигры львов). Лев насыщается при поедании 3-х тигров, а тигр насыщается при поедании 2-х львов. Какое наибольшее количество хищников насытятся?
Задачу решили:
17
всего попыток:
28
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32. Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.
Задачу решили:
9
всего попыток:
16
В правильном шестиугольнике со стороной 3 нарисовали сетку из единичных равносторонних треугольников (смотри рисунок). Художник время от времени подходит к рисунку с шестиугольником, окунает кисть в банку с краской и закрашивает по линиям сетки весь контур одного равностороннего треугольника любого размера. При этом контур очередного закрашиваемого треугольника может проходить по каким-то ранее закрашенным местам. За какое минимальное количество подходов художник может закрасить всю сетку (включая границу шестиугольника)? На рисунке изображён пример частичного закрашивания сетки после 4-х подходов (исключительно для красоты художник использовал разные цвета). В качестве решения необходимо предъявить доказательство минимальности того количества подходов, которое вы нашли.
Задачу решили:
20
всего попыток:
23
Олимпиада для школьников проходила в двух залах. Ни в одном из залов не было трех тёзок. У 100 учеников было двое тёзок в другом зале. У 144 учеников было хотя бы по одному тёзке в каждом зале. У скольких учеников было ровно по одному тёзке в каждом зале?
Задачу решили:
18
всего попыток:
27
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань (буква О, например, написана 3 раза). Сколько раз в среднем надо бросить кубик, чтобы 6 последовательных бросков дали слово "ХОРОШО"?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|