img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Кратно 22" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 8
всего попыток: 22
Задача опубликована: 19.01.24 08:00
Прислал: avilow img
Источник: Клуб "Диоген"
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке изображены две равные фигуры: слева желтая фигура, сложенная из 18 желтых U-пентамино, справа – зеленая фигура, сложенная из 30 зеленых I-тримино, употребив таким образом 18+30=48 фигурок.

Две равные фигуры

Сложите две равные фигуры, одну желтую, другую зеленую, употребив суммарно наименьшее количество желтых U-пентамино и зеленых I-тримино.

Задачу решили: 18
всего попыток: 28
Задача опубликована: 22.01.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

При каком значении параметра P система:

x1 + 2x2 + 4x3 + 8x4 + 8x5 = 16
x1 + 3x2 + 9x3 + 27x4 + 24x5 = 81
x1 + 4x2 + 16x3 + 64x4 + 56x5 = 256
x1 - 3x2 + 9x3 - 27x4 + P*x5 = 81
x1 - 2x2 + 4x3 - 8x4 - 16x5 = 16

не имеет решения?

Задачу решили: 20
всего попыток: 22
Задача опубликована: 24.01.24 08:00
Прислал: TALMON img
Источник: Ибн Альберт
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Lec

В футбольном турнире каждая команда сыграла с каждой из остальных ровно по одному разу, причём ровно половина команд ни разу не выиграли, а ровно пятая часть игр закончились вничью.

Сколько команд участвовало в турнире?

Задачу решили: 10
всего попыток: 18
Задача опубликована: 26.01.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

У Васи есть три предмета:

1. Монета

2. Игральная кость на каждой стороне которой написаны различные гласные буквы английского алфавита: 'AEIOUY'

3. Икосаэдр, на каждой грани которого написаны различные согласные буквы английского алфавита: 'BCDFGHJKLMNPQRSTVWXZ'

Вася кидает монету и:

- если выпадает орел, то он бросает игральную кость и выписывает выпавшую  букву на доску;

- если выпадает решка, то он бросает икосаэдр и выписывает выпавшую букву на доску.

Так он продолжает делать, пока полученная последовательность букв не будет заканчиваться словом 'ABBA'. Сколько раз (в среднем) Василию придется бросить монетку?

Задачу решили: 18
всего попыток: 21
Задача опубликована: 29.01.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

В трапеции угол между диагоналями равен 30°, и они делят острые углы трапеции пополам. Найдите площадь трапеции, если большее основание трапеции равно 8.

Задачу решили: 11
всего попыток: 53
Задача опубликована: 31.01.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

На рисунке слева изображены три несимметричных пентамино, справа приведена фигура, сложенная из этих пентамино и имеющая ось симметрии.

Симметриксы из трех пентамино

Сколько различных фигур, имеющих ось симметрии, можно сложить из этих трех пентамино?

Задачу решили: 19
всего попыток: 21
Задача опубликована: 02.02.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Золотой треугольник и прямоугольный с острым углом 36° имеют равные по длине боковые стороны первого и гипотенузы второго треугольника. Чему равен катет, противолежащий углу 54°, если сумма длин основания и боковой стороны золотого треугольника равна 36.

Задачу решили: 20
всего попыток: 26
Задача опубликована: 05.02.24 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.).

Парабола и целочисленные точки

При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.

Задачу решили: 18
всего попыток: 45
Задача опубликована: 07.02.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: vochfid

Радиус вписанной окружности в треугольник со сторонами 6 м и 10 м равен 2 м. Найти наибольшее значение третьей стороны в мм, округлив его до ближайшего целого.

Задачу решили: 10
всего попыток: 20
Задача опубликована: 09.02.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K.

Прямоугольник в прямоугольнике

Определим функцию f(K, L) как наибольшее целое N. Найдите сумму: f(7, 7) + f(7, 8) + f(7, 9) + ... + f(7, 1000).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.