Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
58
всего попыток:
133
Многочлен вида a0xn+a1xn−1+…+an, назовём однообразным, если n>0, а каждый из его n+1 коэффициентов и каждый из его n корней равен 1 или −1. Сколько существует различных однообразных многочленов?
Задачу решили:
105
всего попыток:
148
Какова максимальная разность арифметической прогрессии, среди членов которой есть числа 1/11, 1/13, 1/17?
Задачу решили:
32
всего попыток:
185
Определим две последовательности многочленов: S0(x)=C0(x)=1, C1(x)=x, Sn+1(x)=Cn+1(x)+xSn(x), Cn+2(x)=xCn+1(x)+x2Sn(x)−Sn(x). Сколько различных действительных корней имеет многочлен C2011(x) в интервале (−1/2, 1/2)?
(Задача изменена, следуя zmerch(у)!)
Задачу решили:
16
всего попыток:
368
Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий. Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!" "Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен).
Задачу решили:
111
всего попыток:
171
На доске написаны 13 чисел: 0, 1, 2, ..., 12. Среди них выбирают два каких-то числа a и b, стирают их, а вместо них пишут одно число ab+a+b. Описанную процедуру повторяют 12 раз. Найдите наибольшее число, которое может остаться на доске.
Задачу решили:
64
всего попыток:
99
Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x.
Задачу решили:
32
всего попыток:
203
Сколько существует точек с целочисленными координатами, лежащих на кривой x2−3y2=1 и расположенных внутри круга радиуса 20112011 с центром в начале координат?
Задачу решили:
123
всего попыток:
164
Утроенная сумма двух положительных чисел не больше их произведения. Найдите наименьшее значение суммы этих чисел.
Задачу решили:
60
всего попыток:
82
Найдите сумму наибольших нечётных делителей всех целых чисел от n+1 до 2n включительно, где n — целое и n>0. В ответе укажите её значение при n=2011.
Задачу решили:
76
всего попыток:
277
Найдите остаток от деления многочлена x57+5x56-13x31-7x30-x2+2x-3 на 7x2+7. В ответе укажите значение многочлена при x=1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|