img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon решил задачу "Третий треугольник" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 167
всего попыток: 393
Задача опубликована: 25.03.09 19:55
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: NushN (Анна Григорук)

Рассмотрим два различных тетраэдра, вписанные в куб так, что вершины каждого являются вершинами куба, а ребра — диагоналями граней.  Во сколько раз объем куба больше, чем пересечение этих тетраэдров?

+ 18
+ЗАДАЧА 32. Три спутника (Д.Б.Фукс, переработка demiurgos)
  
Задачу решили: 108
всего попыток: 501
Задача опубликована: 02.04.09 15:13
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: lg

В рамках новой программы исследования околоземного пространства её руководители хотят запусить три спутника, которые будут летать на одной и той же высоте, делая один оборот вокруг Земли за 15 часов. Спутники нужно вывести на их орбиты так, чтобы в течение нескольких часов пути спутников не пересекались, т.е. чтобы никакие два спутника не побывали за это время в одной и той же точке околоземного пространства. Какого наибольшего целого числа часов можно добиться, правильно выбрав орбиты спутников?

С математической точки зрения речь идёт о непересекающихся дугах больших окружностей сферы (большая окружность — это пересечение сферы с плоскостью, проходящей через её центр).

Например, если спутников только два, а не три, то ответ на вопрос задачи — 14. Для этого их надо запустить так, чтобы один пролетал над Северным полюсом в тот момент, когда другой пролетает над Южным. И через полчаса после их одновременного прохода полюсов у нас заведомо будет 14 часов.

Задачу решили: 385
всего попыток: 746
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: vitsel (Виталий Леонтьев)

  p

|sin(2009x)|dx = ?

0

Задачу решили: 194
всего попыток: 370
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: casper

Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?

Задачу решили: 103
всего попыток: 674
Задача опубликована: 29.04.09 22:06
Прислал: demiurgos img
Источник: по мотивам задач "Гангстеры" и "Аэродромы"
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: Vkorsukov

44 гангстера летают на вертолётах и стреляют друг в друга одновременно. Каждый стреляет в ближайший к нему вертолёт (или в один из ближайших, если несколько из них находятся на равном расстоянии от него), который после этого немедленно взрывается вместе с сидящим в нём гангстером, который всё-таки сам тоже успевает выстрелить. Найдите наименьшее возможное количество убитых. (Вертолёты — это различные точки в пространстве.)

Задачу решили: 89
всего попыток: 326
Задача опубликована: 07.05.09 19:30
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: meduza

Какое минимальное число различных решений, лежащих на отрезке [−π,π], может иметь тригонометрическое уравнение a cos(9x) + b sin(16x) + c cos(25x) + d sin(36x) = 0? (Решения данного уравнения зависят от значений его коэффициентов a, b, c и d.)

Задачу решили: 112
всего попыток: 184
Задача опубликована: 21.05.09 21:06
Прислал: demiurgos img
Источник: Дж. Литлвуд "Математическая смесь"
Вес: 1
сложность: 5 img
баллы: 100

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

Задачу решили: 205
всего попыток: 530
Задача опубликована: 10.06.09 16:27
Прислал: demiurgos img
Источник: В.В.Ткачук "Математика — абитуриенту"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: zmerch

Сколько различных решений имеет уравнение log1/16x=(1/16)x?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.