img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid решил задачу "Суммы цифр" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 32
Задача опубликована: 04.01.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Найдите количество ограниченных функций f: R → R таких, что f(1) > 0 и f(x) удовлетворяют при всех x, y ∈ R неравенству f2(x + y) ≥ f2(x) + 2f(xy) + f2(y)?

Задачу решили: 38
всего попыток: 54
Задача опубликована: 26.02.18 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Найдите остаток от деления многочлена (15x996 + 2x335 – 11x3 + 125x + 646) на многочлен (– 2x2 – 2).

В ответе укажите сумму коэффициентов остатка.

Задачу решили: 43
всего попыток: 47
Задача опубликована: 13.07.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найти сумму ряда: S = \frac{1}{2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{3 \times 4 \times 5} + \frac{1}{5 \times 6 \times 7} + ...

В ответ введите значение eS.

Задачу решили: 38
всего попыток: 48
Задача опубликована: 26.12.18 08:00
Прислал: avilow img
Источник: из личной коллекции задач
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Через начало координат к параболе у=2х2+19х+2019 проведены две касательные. Найдите сумму угловых коэффициентов этих касательных.

Задачу решили: 24
всего попыток: 47
Задача опубликована: 19.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найти количество матриц удовлетворяющих условию:

\begin{pmatrix}
a&b \\
c&d\end{pmatrix}^2=\begin{pmatrix}
c&a \\
d&b\end{pmatrix}, где a, b, c и d - рациональные числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.