| 
   
              Лента событий:  
vcv решил задачу "Треугольник с углом 45 градусов" (Математика):
            
                 
 
                   Пожалуйста, не пишите нам, что вы не можете решить задачу.  Если вы не можете ее решить, значит вы не можете ее решить :-) 
                Задачу решили:
                
                    21 
                
             
                всего попыток:
                
                    106 
                
             
 
 В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?   
                Задачу решили:
                
                    28 
                
             
                всего попыток:
                
                    40 
                
             
 
 Если бросить пару обычных костей (кубиков, грани которых пронумерованы точками от 1 до 6), то имется один вариант, когда выпадает в сумме 2, два варианта, когда выпадает в сумме 3 и т.д. Необычные шестигранные кости - это такие кости, у которых: 
 Значения количества точек для каждой кости представьте в виде неубывающей последовательности чисел, например {1,2,2,3,3,4}, и далее в виде шестизначного числа, 122334. Найдите все необычные кости и в качестве ответа дайте сумму найденных чисел.   
                Задачу решили:
                
                    98 
                
             
                всего попыток:
                
                    136 
                
             
 
 На какие цифры не может оканчиваться натуральное число [x]+[3x]+[6x] если х > 0 - вещественное число (через [x] обозначается целая часть x , т.е наибольшее целое число, не превосходящее x). В ответе укажите произведение цифр.   
                Задачу решили:
                
                    33 
                
             
                всего попыток:
                
                    424 
                
             
 
 Дано множество    
                Задачу решили:
                
                    50 
                
             
                всего попыток:
                
                    157 
                
             
 
 Муравей начинает свой путь в вершине куба и перемещается по ребрам в соответствии со следующим правилом: в каждой вершине он выбирает одно из трех ребер выходящих из этой вершины. Каждое ребро он выбирает с одинаковой вероятностью, независимо от предыдущего выбора. Какова вероятность, что муравей побывает в каждой вершине лишь раз? 
   
                Задачу решили:
                
                    54 
                
             
                всего попыток:
                
                    147 
                
             
 
 Найдите минимальное натуральное число n, n>2, такое что сумма квадратов последовательных n натуральных чисел равна квадрату некоторого натурального числа.   
                Задачу решили:
                
                    40 
                
             
                всего попыток:
                
                    72 
                
             
 
 Для n (100<=n<=200) найти все значения m<=n, такие, что последовательные биномиальные коэффициенты С(n,m), C(n,m+1), C(n,m+2) образуют арифметическую прогрессию. В ответе представить сумму найденных значений m с учетом их кратностей.   
                Задачу решили:
                
                    90 
                
             
                всего попыток:
                
                    103 
                
             
 
 Даны 6 карточек. На каждой из них написано натуральное число. Вы произвольно берете три карточки и вычисляете сумму чисел на них. Вы сделали все 20 возможных комбинаций и заметили, что десять полученных сумм равны 16, а десять других - 18. Какое число из написанных на карточках наименьшее?   
                Задачу решили:
                
                    37 
                
             
                всего попыток:
                
                    133 
                
             
 
 В прямоугольной декартовой системе координат заданы три точки: K(41;29), L(-15;22), M(15;-23). Известно, что они являются вершинами равносторонних треугольников BCK, CAL и ABM, построенных на сторонах некоторого треугольника АВС и лежащих вне его. Найдите координаты вершин треугольника АВС. В ответе укажите сумму координат вершины В, округлив её до ближайшего целого числа.   
                Задачу решили:
                
                    30 
                
             
                всего попыток:
                
                    406 
                
             
 
 Дан треугольник ABC. Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC. Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED. Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE. И так далее по алфавиту почти до конца: последний треугольник - WXY. Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6? 
               Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
            |