Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
240
всего попыток:
355
— Вот это мороз! — Да уж, страшно холодно. — А ты заметила, что оба термометра, один из которых показывает температуру по Цельсию, а другой — по Фаренгейту, стоят на одинаковой отметке? Сколько градусов на улице? (0 по Цельсию = 32 по Фаренгейту, а 100 по Цельсию = 212 по Фаренгейту.)
Задачу решили:
104
всего попыток:
232
Сколько решений в целых (необязательно положительных) числах имеет уравнение xy/(x+y)=2011?
Задачу решили:
106
всего попыток:
127
Cколько решений в целых числах имеет уравнение x2+y2+z2=x2y2?
Задачу решили:
80
всего попыток:
123
В соревновании, состоящем из N состязаний, участвовали Андрей, Боря и Вася. За первое место в каждом состязании присуждалось x, за второе – y, за третье – z очков, где x>y>z>0 и все они целые. В итоге Андрей набрал 22, а Боря и Вася – по 9 очков. Боря победил в забеге на 100 метров. Найдите N и определите, кто был вторым в прыжках в высоту. В ответе введите без пробела сначала N, а затем номер участника по алфавиту: 1 (Андрей), 2 (Боря) или 3 (Вася).
Задачу решили:
94
всего попыток:
152
Укажите максимальное значение выражения , если и для любого .
Задачу решили:
76
всего попыток:
185
Сколько целых положительных решений имеет уравнение:
Задачу решили:
48
всего попыток:
206
Вычислите минимум функции , где — такие неотрицательные действительные числа, что , а . В ответе укажите значение , округлённое до ближайшего целого.
Задачу решили:
83
всего попыток:
126
Сколько различных действительных решений имеет уравнение: ? (Как обычно, — это целая часть числа x, а — его дробная часть.)
Задачу решили:
78
всего попыток:
183
Найдите все натуральные (целые положительные) решения уравнения . В ответе укажите сумму всех возможных значений .
Задачу решили:
34
всего попыток:
63
На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|