img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: tubaki решил задачу "Пять дробей" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 143
всего попыток: 595
Задача опубликована: 05.08.09 12:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: iVantus

Гусеница сидит внутри закрытой коробки длиной 75 см, шириной 32 см и высотой 32 см, посередине боковой квадратной стенки на высоте 3 см от дна. Посередине противоположной стенки на 3 см ниже крышки в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу.

Какое наименьшее число сантиметров ей придётся преодолеть, чтобы вылезти из отверстия? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 75
всего попыток: 682
Задача опубликована: 10.08.09 15:49
Прислал: demiurgos img
Источник: Всесоюзная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На клетчатой бумаге со стороной клетки 5 мм нарисована окружность радиуса 10 см, не проходящая через вершины клеток и не касающаяся сторон клеток. Какое минимальное число клеток она может пересекать?

Задачу решили: 157
всего попыток: 391
Задача опубликована: 31.08.09 11:17
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

От города А до города Б расстояние 35 км. Два велосипедиста выехали из А и из Б одновременно и навстречу друг другу, первый со скоростью 19 км/ч, а второй — 16 км/ч. Перед отправлением на лоб первого велосипедиста, ехавшего из А, села муха, которая взлетела, как только он начал движение, и полетела по направлению к Б со скоростью 40 км/ч. Долетев до второго велосипедиста, ехавшего из Б, она села к нему на лоб, тут же взлетела и полетела к А со скоростью 30 км/ч. (Из А в Б дует ветер.) Долетев до первого велосипедиста, она снова села к нему на лоб, тут же взлетела и полетела к Б, села к нему на лоб... И так далее, пока велосипедисты не столкнулись лбами, раздавив муху. Сколько километров она пролетела?

Задачу решили: 87
всего попыток: 212
Задача опубликована: 01.09.09 15:22
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Прямоугольный треугольник с углом 45° разрезан на n>1 подобных ему треугольников, никакие два из которых не совпадают по размерам. Найдите наименьшее возможное значение n.

(Задача носит исследовательский характер, поскольку никакого доказательства минимальности ответа, заложенного в систему, нам не известно. Вполне возможно, что участникам удастся его уменьшить!)
Задачу решили: 83
всего попыток: 465
Задача опубликована: 12.09.09 00:08
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Перед Вами 25 окопов в ряд. В каком-то из них сидит снайпер. У Вас в руках гранатомёт, позволяющий вдребезги разнести всё содержимое любого из окопов (сам окоп при этом остаётся цел). Сразу после того, как Вы делаете выстрел, снайпер по не известной Вам логике перебегает в соседний окоп (если Вы промазали). Остаться в том же окопе, равно как и перебежать дальше, чем в соседний окоп, он не может. Следующий выстрел. Перебежка. Выстрел. Перебежка. И так далее. Проблема в том, что ни снайпера, ни его перебежек Вы не видите.

Какое минимальное число выстрелов Вам понадобится, чтобы гарантированно ликвидировать снайпера?

(Задача носит исследовательский характер, поскольку доказательства минимальности ответа, заложенного в систему, нам не известно. Надеемся, что участники предложат такое доказательство!)
Задачу решили: 94
всего попыток: 208
Задача опубликована: 14.09.09 10:33
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Какое максимальное число сплошных треугольных пирамид, все рёбра которых равны 10 см, Вам удастся уложить в кубическую коробку с внутренними размерами 10×10×10 см (и закрыть её крышкой)?

Задачу решили: 51
всего попыток: 131
Задача опубликована: 19.09.09 00:06
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В парке оборудовано n остановок для детских паровозиков. У каждого паровозика свой маршрут, состоящий из нескольких (необязательно всех) остановок. От каждой остановки до любой другой можно доехать без пересадки, но только на одном паровозике. С каждого паровозика можно пересесть на любой другой, доехав до нужной остановки. Имеется паровозик, чей маршрут состоит ровно из трёх остановок. Найдите максимально возможное значение n.

Задачу решили: 105
всего попыток: 513
Задача опубликована: 27.09.09 10:19
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Грибник заблудился в лесу. Однако он уверен, что не дальше, чем в 3 км от него, находится прямое шоссе. Какое минимальное число км придётся преодолеть грибнику, чтобы наверняка (т.е. при полном отсутствии везения) выбраться на шоссе? Ответ округлите до ближайшего целого числа.

Задачу решили: 99
всего попыток: 202
Задача опубликована: 01.10.09 15:05
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?

Задачу решили: 45
всего попыток: 75
Задача опубликована: 19.10.09 22:14
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какое максимальное число частей могут делить пространство n плоскостей? (Речь идёт о трёхмерном пространстве и двумерных плоскостях.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.