img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 185
всего попыток: 244
Задача опубликована: 14.12.11 08:00
Прислала: Margosha img
Источник: Московская математическая регата
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Сумма двух вещественных чисел a и b равна 5, при этом значение выражения a+b+a2b+b2a равно 24.

Найти сумму кубов чисел a и b. 

Задачу решили: 146
всего попыток: 176
Задача опубликована: 23.12.11 08:00
Прислала: Margosha img
Источник: Математическая олимпиада Швеции
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: azat

Найти наибольшее число R, при котором система уравнений: 

x-4y=1
Rx+3y=1

имеет решение в целых числах x, y. 

Задачу решили: 163
всего попыток: 177
Задача опубликована: 26.12.11 08:00
Прислала: Margosha img
Источник: Подробности - в комментарии
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Решить ребус:

АПОРТ*4=ТРОПА

(одинаковыми буквами обозначены одинаковые цифры, разными - разные, число не может начинаться с нуля, система счисления - десятичная)

В ответе запишите значение слова ТРОПА. 

Задачу решили: 71
всего попыток: 119
Задача опубликована: 30.12.11 08:00
Прислала: Margosha img
Источник: Турнир журнала "Квант"
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

По кругу выписали несколько попарно различных натуральных чисел, каждое из которых не больше 2011.

Оказалось, что для любых двух чисел, которые стоят через одно, их сумма кратна трём.

Какое максимальное количество чисел могло быть выписано? 

Задачу решили: 77
всего попыток: 152
Задача опубликована: 04.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Найдите сколько наборов натуральных чисел a1, a2, ..., a9 обладает следующиеми свойствами:
1 ≤ a1 ≤ a2 ≤ ... ≤ a9 ≤ 9 
a5 = 5
a9 - a1 ≤ 7.

Задачу решили: 60
всего попыток: 150
Задача опубликована: 06.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
разница между числами ai и bj не меньше 3 для любых i ≠ j,
разница между числами любых двух детей одного пола не меньше 2,
b10 наибольшее среди всех чисел.
Найдите, какое наименьшее значение может принимать b10.

Задачу решили: 59
всего попыток: 188
Задача опубликована: 09.01.12 08:00
Прислала: Margosha img
Источник: Математическая олимпиада Швеции
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Решить в целых числах уравнение

(8x-5y)2+(3y-2z)2+(3z-7x)2=2 

и записать в ответе число его решений.

Задачу решили: 88
всего попыток: 106
Задача опубликована: 01.02.12 08:00
Прислала: Margosha img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Пусть p - простое число, N и m - натуральные. Известно, что 2p+3p=Nm. Найти сумму всех возможных значений m. 

Задачу решили: 77
всего попыток: 195
Задача опубликована: 03.02.12 08:00
Прислала: Margosha img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Anvarych

Сколько существует трёхзначных натуральных чисел, из "цифр" которых можно составить невырожденный равнобедренный треугольник? (Имеется в виду, что если десятичная запись числа имеет вид XYZ, то длины сторон треугольника равны X, Y и Z).

 

Задачу решили: 48
всего попыток: 94
Задача опубликована: 06.02.12 08:00
Прислала: Margosha img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Пусть N - натуральное число, а S(N) - сумма квадратов всех его натуральных делителей (включая единицу и само число). Например, S(10)=12+22+52+102=1+4+25+100=130

Какое наименьшее значение может принимать выражение |S(N)-(N+1)2|?

(|x| означает модуль числа x). 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.