![]()
Лента событий:
kazak1952 решил задачу "Сумма=произведение=частное" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
14
Найдите количество 26-значных квадратных чисел, запись которых в десятичной системе счисления, состоит из двух соседних 13-значных чисел написанных одно за другим: большее слева, меньшее справа. ![]()
Задачу решили:
6
всего попыток:
34
I. Найдите количество эллипсов x2/a2 + y2/b2 = 1 (a и b натуральные, a>b, a+b=6630), на каждом из которых лежат ровно 36 точек с целочисленными координатами. II. То же самое, только a+b=8125 (вместо 6630) Введите в ответе сумму этих двух количеств (I и II). ![]()
Задачу решили:
6
всего попыток:
9
В параллелограмме АВCD на стороне ВС отмечена точка К так, что АК является биссектрисой угла А, отрезок KD является биссектрисой угла АКС. Длина отрезка КС равна целому числу, отношение длины отрезка ВК к длине отрезка КС равно целому числу. Найдите миллиардную (по возрастанию) целочисленную площадь параллелограмма. ![]()
Задачу решили:
9
всего попыток:
41
В кубе ABCDA1B1C1D1 с ребром 1 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользить» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке. Найдите площадь поверхности. Полученное значение площади поверхности округлите до десятых и ответ запишите в виде неправильной дроби. ![]()
Задачу решили:
6
всего попыток:
16
Найдите количество упорядоченных восьмёрок целых чисел A, B, C, D, E, F, G, H, каждое из которых в пределах от -10 до +10 включительно, для которых существуют такие рациональные числа α, β, γ, δ, что выполняется равенство: (A + B√2 + C√3 + D√6) / (E + F√2 + G√3 + H√6) = α + β√2 + γ√3 +δ√6 ![]()
Задачу решили:
5
всего попыток:
7
Фигура «Ёлочка» сложена из полного набора пентамино, как показано на рисунке, и украшена замкнутой гирляндой из 12 лампочек. Гирлянда является маршрутом козлотура, который, перескакивая по лампочкам "ходами козлотура" (см. рисунок), побывав ровно по одному разу в одной из клеток каждого пентамино, возвращается к исходной лампочке. Сколько всего существует таких замкнутых маршрутов козлотура? ![]()
Задачу решили:
6
всего попыток:
7
Рассмотрим квадратную сетку из 20×20 точек. Найдите количество различных (неконгруэнтных) замкнутых ломаных на этой сетке, обладающих следующими свойствами:
На рисунке изображён пример замкнутой ломаной, обладающей этими же свойствами, на квадратной сетке меньшего размера: ![]()
Задачу решили:
5
всего попыток:
14
Рассмотрим треугольную сетку из 1+2+3+...+n точек, расположенных в виде равностороннего треугольника с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один равносторонний треугольник (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9). ![]()
Задачу решили:
9
всего попыток:
26
Рассмотрим квадратную сетку из n2 точек, расположенных в виде квадрата с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один квадрат (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7). ![]()
Это открытая задача
(*?*)
На плоскости дана прямая L и не параллельный ей отрезок AB, который не имеет общих точек с этой прямой. Построить на плоскости с помощью циркуля и односторонней линейки точку M, равноудаленную от точек A и B и прямой L. За одну операцию можно либо провести прямую, либо провести окружность (дугу окружности). За какое минимальное количество операций можно построить точку М?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|