img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid решил задачу "Все функции" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 84
всего попыток: 320
Задача опубликована: 07.05.09 19:30
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: meduza

Какое минимальное число различных решений, лежащих на отрезке [−π,π], может иметь тригонометрическое уравнение a cos(9x) + b sin(16x) + c cos(25x) + d sin(36x) = 0? (Решения данного уравнения зависят от значений его коэффициентов a, b, c и d.)

Задачу решили: 175
всего попыток: 637
Задача опубликована: 10.05.09 12:19
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

В круглый пирог диаметра 35 см запечён металлический рубль диаметра 2 см. На какое минимальное число кусков нужно разрезать пирог, чтобы гарантированно найти монету, если известно, что она расположена в пироге горизонтально? (Разрешается делать только прямолинейные разрезы. Монета считается обнаруженной, если она попадает под нож.) 

Задачу решили: 158
всего попыток: 581
Задача опубликована: 28.05.09 23:08
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 4 img
класс: 6-7 img
баллы: 100

Из какого наименьшего числа квадратов, среди которых нет двух равных, можно сложить прямоугольник? (Квадратов должно быть больше одного.)

Если Вы считаете, что нельзя, то введите 0.

Задачу решили: 73
всего попыток: 255
Задача опубликована: 05.06.09 17:15
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

В далёкой стране к власти пришёл военный диктатор, который хочет стать президентом, победив на демократических выборах, организованных по следующей системе. В первом туре все избиратели объединяются в равные по численности группы, и от каждой группы большинством голосов избирается представитель для голосования во втором туре. Во втором туре все избранные в первом туре представители объединяются в равные группы и в каждой группе выбирают её представителя для голосования в третьем туре. И так далее: в последнем туре представители избирают президента. В стране ровно 5 760 000 избирателей, среди которых n человек безоговорочно поддерживают диктатора (поскольку состоят в регулярной армии). При каком минимальном n можно так организовать выборы, чтобы диктатор гарантированно был избран президентом? (При равенстве голосов в следующий тур проходят независимые кандидаты.)

Диктатор сам заранее определяет количество туров и сколько представителей будут содержать группы в каждом туре — это число может меняться от тура к туру; он также может распределить своих сторонников по группам так, как ему выгодно. Любой избиратель может голосовать за себя, а сам диктатор входит в число n своих сторонников.

Задачу решили: 81
всего попыток: 624
Задача опубликована: 14.06.09 15:23
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

На билете лотереи имеется 60 пустых клеток. Участник лотереи записывает в каждую клетку билета по одному числу от 1 до 60 без повторений. (Билет, заполненный с повторениями, считается недействительным.)  Организаторы лотереи по тем же правилам заполняют свой билет–эталон. Выигрывают те билеты, у  которых хотя бы в одной клетке записано то же число, что и в той же клетке билета–эталона. Какое наименьшее число билетов должен заполнить участник лотереи, чтобы обеспечить себе выигрыш независимо от того, как будет заполнен билет–эталон?

Задачу решили: 82
всего попыток: 298
Задача опубликована: 17.06.09 14:58
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

Перед двумя игроками 4 кучки из спичек: в первой — 11, во второй — 29, в третьей — 37 и в четвёртой — 41 спичка. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из любой кучки по своему выбору — можно взять хоть всю кучку, но брать спички из разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из какой кучки должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите произведение количества взятых спичек и номера кучки.

Задачу решили: 185
всего попыток: 730
Задача опубликована: 28.06.09 21:06
Прислал: Rep img
Источник: Международная математическая олимпиада школьн...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Какое максимальное количество шаров диаметра 1 можно уложить в коробку размерами 10х10х1?

Задачу решили: 85
всего попыток: 165
Задача опубликована: 03.07.09 22:37
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: fedyakov

Рассмотрим десятичные записи степеней двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,... и составим последовательность, состоящую из их первых цифр: 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4... Каждая цифра появляется среди первых n членов полученной последовательности с некоторой частотой, зависящей от n. Например, при n=12 частота появления 1 равна 1/4, 2 — 1/4, 3 — 1/12, 4 — 1/6, 5 — 1/12, 6 — 1/12, 8 — 1/12, а цифры 7 и 9 вообще не встречаются. Найдите число, обратное к предельной (при n→∞) частоте появления семёрки. Ответ округлите до ближайшего целого числа.

Задачу решили: 49
всего попыток: 179
Задача опубликована: 02.08.09 13:28
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

Перед двумя игроками 5 кучек из спичек: в первой — 7, во второй — 10, в третьей — 18, в четвёртой — 19 и в пятой — 24 спички. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из одной или двух кучек по своему выбору — например, можно взять только одну спичку, а можно и все спички из двух кучек, но вообще не брать спичек или брать спички из трёх разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из каких кучек должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите общее количество взятых спичек.

(Эта игра очень похожа на "Игру в спички II"; единственное отличие — там разрешалось брать спички только из одной кучки, а здесь можно и из двух.)
Задачу решили: 49
всего попыток: 240
Задача опубликована: 10.09.09 00:05
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Гусеница сидит внутри закрытой коробки высотой 24 см посередине её вертикального ребра. Посередине самого дальнего от гусеницы вертикального ребра в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу. Известно, что к отверстию ведут n различных кратчайших путей равной длины. При каких длине и ширине коробки значение максимально и чему оно равно? В ответе укажите сумму длин в см всех n кратчайших путей гусеницы до отверстия при наибольшем значении n.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.